Network Alignment: Recent Advances and Future Directions

Si Zhang (UIUC)

Hanghang Tong (UIUC)
Mining on Multiple Networks

Graph Level
(e.g., graph similarity, classification, etc.)

Subgraph Level
(e.g., subgraph matching, cross-domain clustering, etc.)

Node Level
(e.g., network alignment, multi-view node classification)

We Are Here!
Multiple Networks Are Prevalent

Online Social Networks

Transaction Networks
- CHASE
- Bank of America
- PayPal
- Venmo
- Alipay

PPI Networks
- yeast
- elegans
- fly
- mouse

Knowledge Graphs
- DBpedia
- Freebase
- Yago
Multiple Networks: Examples

• Multiple social networks are inter-linked

Linked by “branches”
Multiple Networks: Examples

• Multiple transaction networks are inter-linked

• Q: How to find those “branches”?
What Is Network Alignment?

• Find node correspondence across multiple networks
Network Alignment: Prob. Def.

- **Given:**
 - a set of networks $\{G_l\} \ (l \geq 2)$ where $G_l = \{\mathcal{V}_l, \mathcal{E}_l, A_l\}$;
 - $\mathcal{V}_l, \mathcal{E}_l, A_l$ are the nodes, edges and adjacency matrix of G_l;
 - prior alignment matrices $\{H_{l_1, l_2}\}$ between G_{l_1} and G_{l_2}.

- **Find:** the alignment matrices $\{S_{l_1, l_2}\}$ between G_{l_1} and G_{l_2}.

![Diagram of networks G_1 and G_2 with alignment matrices S_{l_1, l_2}]
Why Do We Care?

Identify Species-Specific Pathways
Protein-Protein Interaction (PPI) networks

PPI network 1 PPI network 2

Cross Network Information Diffusion

social network 1 social network 2

Cross-Site Recommendation

Users Items Users Items

Fraud Detection

looks normal looks normal money laundering?
Related Setting: Graph Matching

- It solves for the permutation matrix P that minimizes
\[\|A_2 - P^T A_1 P\|_F^2 + \text{Tr}(H^T P) \]

- Can be interpreted as a quadratic assignment problem
- $P \in \{0,1\}^{n \times n}$, $P1 = 1$, $1^T P = 1^T$

- Need relaxations on the constraints
 - Doubly stochastic relaxation
 - Spectral relaxation

- Optional external information H
Related Setting: Entity Alignment

- To align entities across knowledge graphs

Traditional Methods

• Graph matching-based methods [Koutra’13, Zhang’15]

\[
\min_S \| A_2 - S^T A_1 S \|^2_F
\]

• Assumption: networks are noisy permutations of each other

• Sparse probabilistic relaxation, i.e., \(0 \leq S_{ij} \leq 1\), \(\|S\|_0 \leq t\)

• For bipartite graphs, \(\min_{P,Q} \| B_2 - PB_1 Q \|^2_F\) [Koutra’13]
Traditional Methods

• Random walk-based methods (e.g., IsoRank) [Singh’08, Liao’09]
 • Intuition: random walks on Kronecker product graph
 \[s = \alpha(A_1 \otimes A_2)s + (1 - \alpha)h \]
 • \(s = \text{vec}(S), \ h = \text{vec}(H) \)

Key Challenge #1: Complexity

• Time complexity:
 • Most of existing works have an at least $O(n^2)$ time complexity
 • Inefficient computations for large-scale networks

• Space complexity:
 • At least $O(n^2)$ to store the alignment matrix
 • Costly memory consumptions

• **Q:** How to efficiently solve network alignment?
Key Challenge #2: Variety

- Networks have rich contextual information
 - Node attributes, e.g., gender, age, etc.
 - Edge attributes, e.g., relation types, etc.

Q: How to encode contextual information to enhance the alignment performance?
Key Challenge #3: Heterogeneity

- Networks appear in various sources
 - Networks may capture distinct information
 - Facebook: to connect friend, family, etc.
 - LinkedIn: to connect professionals
 - Same nodes have different behavior patterns
 - E.g., a user is very active in Facebook but quiet in Twitter

Q: How to handle the heterogeneity behind multi-sourced networks?
RoadMap

• Motivations and Background

• Part I: Recent Network Alignment Algorithms

• Part II: Network Alignment Applications

• Part III: Future Research Directions
Overview of Part I

Part I: Recent Network Alignment (NA) Algorithms

Pairwise NA
- Consistency-based
 - w/o attributes
 - w/ attributes
- Embedding-based
 - w/o attributes
 - w/ attributes
- Optimal transport-based
 - w/o attributes

Collective NA
- Consistency-based
 - w/o attributes
 - w/ attributes
- Embedding-based
 - w/o attributes

Higher-Order NA
- Consistency-based
 - Single-level
 - Multilevel
- Embedding-based
 - w/o attributes

Related Tasks
- Entity alignment
 - Non-GNN based
 - GNN-based
- Cross-layer inference
- Cross-network transformation
Pairwise Network Alignment

• **Given:** two networks G_1, G_2 with/without attributes

• **Find:** the node correspondence across networks

Illustrative example of pairwise network alignment w/o attributes
Consistency-Based Methods

• Intuition:
 • If two nodes are aligned, e.g., node-\(a\) in \(G_1\) and node-\(x\) in \(G_2\)
 • Then their neighbors are likely to be aligned
NetAlign: A Message Passing Method

• Key idea: to maximize the number of overlaps

NetAlign – Formulation #1

- To maximize the # of overlaps
 - Equivalent to maximizing the # of nonzeros in A
 - $\frac{\beta}{2} s^T A s$

- $A(i'i', jj') = 1$ if
 - $A_1(i, j) = 1$
 - $A_2(i', j') = 1$
 - $H(i, i') > 0, H(j, j') > 0$

- $s_{ii'}A(i'i', jj')s_{jj'}$ is high if
 - i, i' are likely to be aligned
 - j, j' are likely to be aligned

NetAlign – Formulation #2

• Encode the prior knowledge
 • \(s^T \text{vec}(H) = \sum_{i,i'} S(i, i') H(i, i') \rightarrow \text{score from prior knowledge} \)

• Valid matching constraints
 • \(\sum_{i', \text{s.t. } H(i, i') > 0} S(i, i') \leq 1 \)
 • \(\sum_{i, \text{s.t. } H(i, i') > 0} S(i, i') \leq 1 \)
 • \(S(i, i') \in \{0,1\} \)

NetAlign – Factor Graph

- **Nodes:**
 - Variable nodes: e.g.,
 - Node pairs that form overlaps
 - Function nodes: constraints

\[f_i = \begin{cases}
1 & \sum_{H(i,i')>0} s_{ii'} \leq 1 \\
0 & \text{otherwise}
\end{cases} \quad g_i' = \begin{cases}
1 & \sum_{H(i,i')>0} s_{ii'} \leq 1 \\
0 & \text{otherwise}
\end{cases} \]

\[h_{ii'jj'} = \begin{cases}
1 & s_{ii'jj'} = s_{ii'}s_{jj'} \\
0 & \text{otherwise}
\end{cases} \]

- **Edges:** connecting each function node to the variable nodes it acts on

NetAlign – Algorithm

• Belief propagation
 • Iteratively makes local and greedy decisions
 • Updated by passing messages between nodes in factor graph

• Messages $m_{ii'}^t \rightarrow f_i, m_{ii'}^t \rightarrow g_i'$
 • Control matching constraints
 • Also contain info about term $\alpha s^T \text{vec}(H)$

• Messages $m_{ii'}^t \rightarrow h_{ii'jj'}$
 • Agents in a square should communicate
 • Term $\frac{\beta}{2} s^T As$

Experimental Results

<table>
<thead>
<tr>
<th>Alg.</th>
<th>Data</th>
<th>Overlap</th>
<th>Sol. Time</th>
<th>Total Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>MWM</td>
<td>musm-homo</td>
<td>393</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>dmela-scere</td>
<td>135</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>lcsh-small</td>
<td>119</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>lcsh2wiki</td>
<td>2346</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Iso</td>
<td>musm-homo</td>
<td>1027</td>
<td>0.0</td>
<td>0.4</td>
</tr>
<tr>
<td></td>
<td>dmela-scere</td>
<td>301</td>
<td>3.7</td>
<td>10.7</td>
</tr>
<tr>
<td></td>
<td>lcsh-small</td>
<td>257</td>
<td>0.0</td>
<td>0.7</td>
</tr>
<tr>
<td></td>
<td>lcsh2wiki</td>
<td>11732</td>
<td>11.7</td>
<td>587.3</td>
</tr>
<tr>
<td>MP</td>
<td>musm-homo</td>
<td>1076</td>
<td>2.6</td>
<td>13.2</td>
</tr>
<tr>
<td></td>
<td>dmela-scere</td>
<td>369</td>
<td>26.7</td>
<td>34.9</td>
</tr>
<tr>
<td></td>
<td>lcsh-small</td>
<td>316</td>
<td>7.6</td>
<td>12.6</td>
</tr>
<tr>
<td></td>
<td>lcsh2wiki</td>
<td>15974</td>
<td>3795.3</td>
<td>4198.4</td>
</tr>
<tr>
<td>MP++</td>
<td>musm-homo</td>
<td>1062</td>
<td>14.4</td>
<td>17.3</td>
</tr>
<tr>
<td></td>
<td>dmela-scere</td>
<td>376</td>
<td>28.7</td>
<td>33.3</td>
</tr>
<tr>
<td></td>
<td>lcsh-small</td>
<td>318</td>
<td>11.8</td>
<td>15.2</td>
</tr>
<tr>
<td></td>
<td>lcsh2wiki</td>
<td>15771</td>
<td>4103.8</td>
<td>4990.2</td>
</tr>
<tr>
<td>MR</td>
<td>musm-homo</td>
<td>1070</td>
<td>12.5</td>
<td>12.6</td>
</tr>
<tr>
<td></td>
<td>dmela-scere</td>
<td>375</td>
<td>22.7</td>
<td>79.4</td>
</tr>
<tr>
<td></td>
<td>lcsh-small</td>
<td>318</td>
<td>4.1</td>
<td>16.8</td>
</tr>
<tr>
<td></td>
<td>lcsh2wiki</td>
<td>16836</td>
<td>4878.2</td>
<td>4988.0</td>
</tr>
</tbody>
</table>

Final: Attributed Network Alignment

- **Given:**
 - two networks $\{G_l\}$ ($l = 1, 2$) where $G_l = \{\mathcal{V}_l, \mathcal{E}_l, A_l, N_l, E_l\}$
 - N_l, E_l denote the node attributes and edge attributes;
 - prior alignment matrices H between G_1 and G_2.

- **Find:** the alignment matrix S between G_1 and G_2.

Final – Formulation #1

• Topological consistency
 • **Intuition:** similar node-pairs tend to have similar neighboring node-pairs

• Example:
 • Large $S(a, x)$
 • Large $A_1(a, b)$ and $A_2(x, y)$

Final – Formulation #2

- Node attribute consistency
 - **Intuition:** similar node-pairs share similar node attributes

- Large $S(a, x)$ node-a and node-x share similar attributes

Final – Formulation #3

• Edge attribute consistency
 • Intuition: similar node-pairs connect to their neighbor-pairs via similar edge attributes

• Example:
 • Large $S(a, x)$
 • Large $S(b, y)$
 → Edge (a, b) & (x, y) share similar attributes

Final – Overall Formulation

- **Objective function**

\[
\min_S J(S) = \sum_{a,b,x,y} \left[\frac{S(x,a)}{\sqrt{f(x,a)}} - \frac{S(y,b)}{\sqrt{f(y,b)}} \right]^2 \times \Phi(x,a)\Phi(y,b) \times \Psi((x,y),(a,b))
\]

#1. Topology Consistency
#2. Node Attribute Consistency
#3. Edge Attribute Consistency

- **Matrix-form objective function**

\[
\min_S J(S) = \min_S \sum_{v,w} \left[\frac{s(v)}{\sqrt{D(v,v)}} - \frac{s(w)}{\sqrt{D(w,w)}} \right]^2 W(v,w)
\]

\[s = \text{vec}(S) = \min_s s^T (I - \overline{W}) s\]

attributed Kronecker product

Final – Algorithm

• Fixed-point solution: by setting derivative to 0
 • Converges to the global optimal solution

\[s = \alpha \mathbf{W} s + (1 - \alpha) \mathbf{h} \Rightarrow s = (1 - \alpha)(I - \alpha \mathbf{W})^{-1} \mathbf{h} \]

• Intuition: a similarity propagation to neighboring node-pairs, which is additionally calibrated by node/edge attributes

• Speed-up variants:
 • Low-rank approximation for full alignment
 • Low-rank approximation for on-query alignment

Final – Low-Rank Approximation Algorithm

• If we only consider node attributes

\[s = (1 - \alpha) \left(I - \alpha D_N^{-\frac{1}{2}} N (A_1 \otimes A_2) N D_N^{-\frac{1}{2}} \right)^{-1} h \]

• Key Idea: Low rank approximation of \(A_1 \) and \(A_2 \)

\[
\begin{align*}
A_1 & \approx U_1 \Lambda_1 U_1^T \\
A_2 & \approx U_2 \Lambda_2 U_2^T
\end{align*}
\]

\[
\begin{align*}
s & \approx (1 - \alpha) \left(I + \alpha D_N^{-\frac{1}{2}} N U \Lambda U^T N D_N^{-\frac{1}{2}} \right) h \\
\Lambda & = [(\Lambda_1 \otimes \Lambda_2)^{-1} - \alpha U^T N D_N^{-1} N U]^{-1}
\end{align*}
\]

• Complexity: \(O(n^6) \) or \(O(mnt_{\text{max}}) \) \(\rightarrow \) \(O(n^2 r^4) \)

Final – Experimental Results

Observation: attributes help improve network alignment.

Final – Experimental Results

Observation: FINAL gains a better quality-speed balance.

Final – Experimental Results

Observation: FINAL On-Query gains around 90% accuracy relative to exact FINAL-N, but more than 100 times faster.

Final – More on Computations

• Further speed-up: from $O(n^2)$ to $O(m)$
 • Key idea: indirect representation of S [1]
 • Theorem: Low-rank of A_1 and $A_2 \rightarrow$ low-rank of S

```
\begin{align*}
S & \leftarrow U_2 \times M \times U_1^T \\
& \quad r_2 \times r_1
\end{align*}
```

• Alignment quality: linear complexity w/o approximation
 • Multilevel alignment (perfect interpolation theorem) [2]
 • Implicit Krylov subspace methods [3]

Overview of Part I

Part I: Recent Network Alignment (NA) Algorithms

Pairwise NA
- Consistency-based
 - w/o attributes
 - w/ attributes
- Embedding-based
 - w/o attributes
 - w/ attributes
- Optimal transport-based
 - w/o attributes

Collective NA
- Consistency-based
 - w/o attributes
 - w/ attributes
- Embedding-based
 - w/o attributes

Higher-Order NA
- Consistency-based
 - Single-level
 - Multilevel

Related Tasks
- Entity alignment
 - Non-GNN based
 - GNN-based
- Cross-layer inference
- Cross-network transformation
Embedding-Based Methods

• Intuition: to learn node representations that
 • Preserve structural/attribute proximity within networks
 • Preserve proximity across aligned nodes
IONS: Aligning Users by Network Embedding

- **Background:** network embedding by LINE (2nd order)
 - Compute two distributions:

 Empirical distribution of neighborhood structure:
 \[
 \hat{p}_2(v_j \mid v_i) = \frac{w_{ij}}{w_{ik}}
 \]

 Model distribution of neighborhood structure:
 \[
 p_2(v_j \mid v_i) = \frac{\exp(\bar{u}_i^T \bar{u}_j)}{\sum_{k \in V} \exp(\bar{u}_i^T \bar{u}_k)}
 \]

- **Minimize the KL divergence** by omitting constant terms

 \[
 O_2 = \sum_{i} KL(\hat{p}_2(\cdot \mid v_i), p_2(\cdot \mid v_i)) = \sum_{(i,j) \in E} w_{ij} \log p_2(v_j \mid v_i)
 \]

IONE – Within-Network Embedding

- **Intuition**: to preserve structure proximity

- Embedding vectors for node-\(i\)
 - A node vector \(u_i\)
 - Context vectors: (1) input context \(u_i'\), (2) output context \(u_i''\)

\[
p_1(v_j|v_i) = \frac{\exp (u_j' \cdot u_i)}{\sum_{k=1}^{V} \exp (u_k'^T \cdot u_i)}
\]

\[
p_2(v_i|v_j) = \frac{\exp (u_i'' \cdot u_j)}{\sum_{k=1}^{V} \exp (u_k''^T \cdot u_j)}
\]

Empirical distributions:
\[
\hat{p}_1(i, j) = \frac{w_{ij}}{d_i^{\text{out}}}
\]
\[
\hat{p}_2(i, j) = \frac{w_{ij}}{d_j^{\text{in}}}
\]

- Objective: minimize KL divergences

IONE – Cross-Network Embedding

• **Intuition:** aligned nodes coincide in embedding space

Model distribution: \[p_1(v_j^Y|v_k^X) = \frac{\exp(u_j^Y^T u_k^X)}{\sum_{k \in V_X} \exp(u_j^Y^T u_k^X)} \]

Empirical distribution: \[\hat{p}_1(v_j^Y|v_k^X) = \sum_{v_i \in V_Y} p_a(v_i^Y|v_k^X) \times \frac{w_{ij}}{d_{i_{out}}} \]

• \(p_a(v_i^Y|v_k^X) \): probability that \(v_k^X \) and \(v_i^Y \) are aligned

• **Objective:** minimize KL divergences
 • e.g., \(p_1(v_j^Y|v_i^X) \) vs. \(\hat{p}_1(v_j^Y|v_i^X) \)

IONE – Model Inference

• SGD with negative sampling

\[
\begin{align*}
\log p_1(v_j^X | v_i^X) & \propto \log \sigma (\overrightarrow{u_j^X}^T \cdot \overrightarrow{u_i^X}) \\
& \quad + \sum_{m=1}^{K} E_{v_n \sim p_n(v)} \log \sigma (-\overrightarrow{u_n^X}^T \cdot \overrightarrow{u_i^X}) \\
\log p_1(v_j^Y | v_k^X) & \propto \log \sigma (\overrightarrow{u_j^Y}^T \cdot \overrightarrow{u_k^X}) \\
& \quad + \sum_{m=1}^{K} E_{v_n \sim p_n(v)} \log \sigma (-\overrightarrow{u_n^Y}^T \cdot \overrightarrow{u_k^X})
\end{align*}
\]

IONE – Experimental Results

- Dataset: Foursquare-Twitter

IONE – Case Study

DeepLink: Deep Learning for User Identity Linkage

• Motivations:
 • Heterogeneity across networks \rightarrow Complex alignment
 • Scarcity of labeled alignment \rightarrow Supervised training is not easy

• Key questions:
 • How to learn non-linear transformation for alignment?
 • How to boost supervised training algorithm?

• Key idea: use deep neural network with dual-learning

DeepLink – Network Embedding

• Key idea: pre-trained Skip-gram based embedding
 • To predict the context of a center node

• Context sampling:
 • Random walks from center nodes

• Objective function:
 • Original: to maximize
 \[p(u_{t+j} \mid u_t) = \frac{\exp(v_{u_{t+j}}^T v_{u_t}')}{\sum_{i=1}^m \exp(v_{u_i}^T v_{u_t}')} \]
 • With negative sampling:
 \[\log[\sigma(v_{u_{t+j}}^T v_{u_t}')] + \sum_{i=1}^K \mathbb{E}_{u_i \sim p_n(u)}[\log(1 - \sigma(v_{u_i}^T v_{u_t}'))] \]

DeepLink – Neural Mapping Learning

• Goal: to learn non-linear alignment across networks

• Intuition: neural networks capture complex nonlinearity

• Key idea: use two multilayer perceptrons as mappings
 • One MLP (denoted by Φ) to map from network G^s to G^t
 • Another MLP (denoted by Φ^{-1}) for G^t to G^s

DeepLink – Dual Learning

• Goal: to address the lack of labeled alignment

• Components:
 • **Unsupervised alignment pre-training** uses node embedding to learning two weak mapping functions Φ and Φ^{-1}
 • **Supervised alignment learning** uses labeled alignment to improve weak mapping functions

DeepLink – Unsupervised Pre-training

• Goal: to learn self-consistent mappings
• Method: autoencoder type of architecture
 • Encoder: mapping function Φ
 • Decoder: mapping function Φ^{-1}
• Objective function:
 • Minimize difference between $\Phi^{-1}(\Phi(v_u))$ and v_u

DeepLink – Supervised Learning

- Key idea: align according to some reward functions
- Method:
 - Find k-similar embeddings $v'(u_i)$ in G^t for mapped embeddings of node-a in G^s, i.e., $u_i \in \text{Top}(\Phi(v(u_a)))$
- Rewards:
 - $r_{s,t}^a = \frac{1}{k} \sum_{i=1}^{k} \log(\cos(v(u_i), v'(u_a)) + 1)$
 - $r_{t,s}^a = \frac{1}{k} \sum_{i=1}^{k} \log(\cos(\Phi^{-1}(v'(u_i)), v(u_a)) + 1)$
- To maximize rewards

DeepLink – Experimental Results

- **Dataset:** Foursquare-Twitter

Comparisons of alignment precision.

<table>
<thead>
<tr>
<th></th>
<th>P@1</th>
<th>P@5</th>
<th>P@9</th>
<th>P@13</th>
<th>P@21</th>
<th>P@30</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRW</td>
<td>0.0000</td>
<td>0.0219</td>
<td>0.0476</td>
<td>0.0538</td>
<td>0.0909</td>
<td>0.1603</td>
</tr>
<tr>
<td>MAG</td>
<td>0.0638</td>
<td>0.1362</td>
<td>0.1705</td>
<td>0.2081</td>
<td>0.2708</td>
<td>0.3229</td>
</tr>
<tr>
<td>MAH</td>
<td>0.0500</td>
<td>0.1219</td>
<td>0.1886</td>
<td>0.2148</td>
<td>0.2513</td>
<td>0.0003</td>
</tr>
<tr>
<td>ONE</td>
<td>0.1229</td>
<td>0.2533</td>
<td>0.3038</td>
<td>0.3510</td>
<td>0.4071</td>
<td>0.4270</td>
</tr>
<tr>
<td>IONE</td>
<td>0.2238</td>
<td>0.4033</td>
<td>0.4638</td>
<td>0.5010</td>
<td>0.5571</td>
<td>0.5970</td>
</tr>
<tr>
<td>DeepLink</td>
<td>0.3447</td>
<td>0.5942</td>
<td>0.6609</td>
<td>0.6866</td>
<td>0.7000</td>
<td>0.7048</td>
</tr>
</tbody>
</table>

Observation: DeepLink achieves highest accuracy in top-k identity matching.

DeepLink – Experimental Results

• Visualization of cosine similarities of randomly sampled anchor nodes (the more diagonalized, the better).

 Observations:
• IONE disrupts the embedding similarities of labeled alignment pairs after training.
• In contrast, DeepLink still preserves the anchor linkage.
• Similarly for testing anchor nodes.

Regal: Representation Learning-Based Graph Alignment

- Goal: unsupervised embedding for network alignment

<table>
<thead>
<tr>
<th></th>
<th>Regal</th>
<th>IONE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Key idea</td>
<td>matrix factorization</td>
<td>skip-gram w/ negative sampling</td>
</tr>
<tr>
<td>Attributes</td>
<td>w/ node attributes</td>
<td>w/o attributes</td>
</tr>
<tr>
<td>Supervision</td>
<td>unsupervised</td>
<td>semi-supervised</td>
</tr>
<tr>
<td>Complexity</td>
<td>sub-quadratic</td>
<td>sub-quadratic</td>
</tr>
</tbody>
</table>

Regal – Overview

• Node feature extraction
• Node embedding learning by matrix factorization
• Network alignment

Regal – Node Feature Extraction

• Structural identity
 • \mathcal{R}_u^k: the set of nodes exactly k steps away from u
 • $d_u^k(i)$: the number of nodes in \mathcal{R}_u^k with degree of i
 • $d_u = \sum_{i=1}^{K} \delta^{k-1} d_u^k$ (δ is the discount factor)
 • Logarithmic binning: $d_u^k(i)$ is the number of nodes $u \in \mathcal{R}_u^k$ such that $[\log_2 \deg(u)] = i$

• Attribute-based identity
 • Node input feature vector f_u

Regal – Cross-Network Node Similarity

• Direct computation

\[\text{sim}(u, v) = \exp\left[-\gamma_s \| \mathbf{d}_u - \mathbf{d}_v \|_2^2 - \gamma_a \times \text{dist}(\mathbf{f}_u, \mathbf{f}_v) \right] \]

• Limitation: costly computation \(O(n^2) \) where \(n = n_1 + n_2 \)

• Efficient computation
 • Reduce to node-landmark similarity
 • \(\mathcal{L} \): a set of \(p \) landmark nodes chosen randomly
 • Node-landmark similarity matrix: \(C(u, v), \ v \in \mathcal{L} \)
 • Landmark-landmark similarity

\[W(v_1, v_2) = C(v_1, v_2), \ v_1 \in \mathcal{L} \]

Regal – Node Embedding Learning

• Nystrom-based approximation

\[S \approx \tilde{S} = CW^+ C^T \]

• \(W^+ \): pseudo-inverse of \(W \)

• Embedding: \(Y = CU\Sigma^{1/2} \) where \([U, \Sigma, V] = \text{SVD}(W^+)\)

Regal – Alignment Inference

- K-D tree for fast similarity search
- Similarity scores:

\[\text{sim}(u, v) = e^{-\|\overline{Y}_1[u] - \overline{Y}_2[v]\|_2^2} \]

- Complexity:
 - Feature extraction: \(O(nKd_{\text{avg}}^2) \)
 - Node similarity: \(O(npb) \)
 - Node embedding: \(O(np^2) \)
 - Alignment: \(O(n \log n) \)

Regal – Experimental Results

- Data constructions: (1) noisy permutations of one network, (2) synthetic node attributes

Regal – Experimental Results

• Running time:

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Arxiv (Avg)</th>
<th>PPI (Avg)</th>
<th>Arenas (Avg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FINAL</td>
<td>4182 (180)</td>
<td>62.88 (32.20)</td>
<td>3.82 (1.41)</td>
</tr>
<tr>
<td>NetAlign</td>
<td>149.62 (282.03)</td>
<td>22.44 (0.61)</td>
<td>1.89 (0.07)</td>
</tr>
<tr>
<td>IsoRank</td>
<td>17.04 (6.22)</td>
<td>6.14 (1.33)</td>
<td>0.73 (0.05)</td>
</tr>
<tr>
<td>Klaw</td>
<td>1291.00 (373)</td>
<td>476.54 (8.98)</td>
<td>43.04 (0.80)</td>
</tr>
<tr>
<td>REGAL-node2vec</td>
<td>709.04 (20.98)</td>
<td>139.56 (1.54)</td>
<td>15.05 (0.23)</td>
</tr>
<tr>
<td>REGAL-struc2vec</td>
<td>1975.37 (223.22)</td>
<td>441.35 (13.21)</td>
<td>74.07 (0.95)</td>
</tr>
<tr>
<td>REGAL</td>
<td>86.80 (11.23)</td>
<td>18.27 (2.12)</td>
<td>2.32 (0.31)</td>
</tr>
</tbody>
</table>

Faster computations due to landmark strategy and K-D tree search.

Overview of Part I

Part I: Recent Network Alignment (NA) Algorithms

- Pairwise NA
 - Consistency-based
 - w/o attributes
 - w/ attributes
 - Embedding-based
 - w/o attributes
 - w/ attributes
 - Optimal transport-based
 - w/o attributes

- Collective NA
 - Consistency-based
 - w/o attributes
 - w/ attributes
 - Embedding-based
 - w/o attributes

- Higher-Order NA
 - Consistency-based
 - Single-level
 - Multilevel
 - Embedding-based
 - w/o attributes

- Related Tasks
 - Entity alignment
 - Non-GNN based
 - GNN-based
 - Cross-layer inference
 - Cross-network transformation
Gromov-Wasserstein Learning for Graph Matching and Node Embedding

• Backgrounds:
 • Networks are often noisy.
 • Many methods learn specific transformations across embeddings of different networks.

• Key question:
 • How to jointly learn node embeddings and infer alignment?

• Benefits of joint problem:
 • Distance between learned node embeddings as auxiliary information of edges → help reduce noise
 • Learn in same manifold → lower risk of model misspecification

GWL - Preliminaries

• Gromov-Wasserstein distance
 • An optimal transport-like distance for metric spaces
 • Calculates distances between pairs of samples of each domain
 • Measures how these distances compare to those in other domains

• Gromov-Wasserstein discrepancy
 • A relaxation by using dissimilarity measurement instead of strict distance metrics

• Metric-measure space of a graph
 • Corresponds to a pair \((C, \mu) \in \mathbb{R}^{|V| \times |V|} \times \Sigma^{|V|}\) of a graph \(G\).
 • \(C = [c_{ij}]\) represents a node distance/dissimilarity matrix.
 • \(\mu = [\mu_i]\) is the empirical distribution of nodes.

GWL - Gromov-Wasserstein Learning Framework

• Gromov-Wasserstein discrepancy between graphs
 • Given G_s and G_t, the discrepancy between (C_s, μ_s) and (C_t, μ_t)

 $$d_{GW}(\mu_s, \mu_t) := \min_{T \in \Pi(\mu_s, \mu_t)} \sum_{i,j,i',j'} L(c^s_{ij}, c^t_{i'j'}) T_{ii'} T_{jj'}$$

 $$= \min_{T \in \Pi(\mu_s, \mu_t)} \langle L(C_s, C_t, T), T \rangle.$$

• $L(\cdot, \cdot)$: element-wise loss, e.g., mean square or KL-divergence

• T: optimal transport between nodes of two networks, indicating probabilities of alignment

• $L_{jj'} = \sum_{i,i'} L(c^s_{ij}, c^t_{i'j'}) T_{ii'}$

• $L(C_s, C_t, T) = [L_{jj'}] \in \mathbb{R}^{|V_s| \times |V_t|}$

GWL - Gromov-Wasserstein Learning Framework

• Proposed model
 • Use node embeddings X_s, X_t for dissimilarity matrices

$$\min_{X_s, X_t} \min_{T \in \Pi(\mu_s, \mu_t)} \left\{ \underbrace{L(C_s(X_s), C_t(X_t), T)}_{\text{Gromov-Wasserstein discrepancy}} + \alpha\langle K(X_s, X_t), T \rangle + \beta R(X_s, X_t) \right\}$$

• $C_s(X_s) = (1 - \alpha)C_s + \alpha K(X_s, X_s)$ where C_s is computed by edge weights and $K(X_s, X_s)$ measures distance within same network based on node embedding.

• $R(X_s, X_t) = \sum_{k=S,t} L(K(X_k, X_k), C_k) + L(K(X_s, X_t), C_{st})$

Optional when given labeled alignment

GWL – Learning Algorithm

• Alternatively learn optimal transport and embedding

• Learning optimal transport
 • Proximal point method

\[
\min_{T \in \mathcal{P}(\mu_s, \mu_t)} \langle L(C_s(X_s^{(m)}), C_t(X_t^{(m)}), T), T \rangle + \alpha \langle K(X_s^{(m)}, X_t^{(m)}), T \rangle + \gamma KL(T \| T^{(n)})
\]

A proximal term based on KL-divergence

• Updating embeddings
 • Given optimal transport \(\hat{T}^{(m)} \), solve by gradient descent

\[
\min_{X_s, X_t} \alpha_m \langle K(X_s, X_t), \hat{T}^{(m)} \rangle + \beta R(X_s, X_t)
\]

GWL – Experimental Results

• Communication network alignment
 • Dataset: MC3 used in the Mini-Challenge 3 of VAST Challenge 2018

• Model Variants:
 • GWL-C and GWL-R: use cosine and RBF distance on embeddings
 • GWD: no embedding-based distance

<table>
<thead>
<tr>
<th>Method</th>
<th>Call→Email (Sparse) Node Correctness (%)</th>
<th>Call→Email (Dense) Node Correctness (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GAA</td>
<td>34.22</td>
<td>0.53</td>
</tr>
<tr>
<td>LRSA</td>
<td>38.20</td>
<td>2.93</td>
</tr>
<tr>
<td>TAME</td>
<td>37.39</td>
<td>2.67</td>
</tr>
<tr>
<td>GRAAL</td>
<td>39.67</td>
<td>0.48</td>
</tr>
<tr>
<td>MI-GRAAL</td>
<td>35.53</td>
<td>0.64</td>
</tr>
<tr>
<td>MAGNA++</td>
<td>7.88</td>
<td>0.09</td>
</tr>
<tr>
<td>HugAlign</td>
<td>36.21</td>
<td>3.86</td>
</tr>
<tr>
<td>NETAL</td>
<td>36.87</td>
<td>1.77</td>
</tr>
<tr>
<td>GWD</td>
<td>23.16±0.46</td>
<td>1.77±0.22</td>
</tr>
<tr>
<td>GWL-R</td>
<td>39.64±0.57</td>
<td>3.80±0.23</td>
</tr>
<tr>
<td>GWL-C</td>
<td>40.45±0.53</td>
<td>4.23±0.27</td>
</tr>
</tbody>
</table>

GWL – Experimental Results

• Procedure recommendation
 • Dataset: MIMIC-III dataset
 • Goal: recommend suitable procedures for patients, according to their disease characteristics.

<table>
<thead>
<tr>
<th>Method</th>
<th>Top-1 (%)</th>
<th></th>
<th></th>
<th>Top-5 (%)</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>P</td>
<td>R</td>
<td>F1</td>
<td>P</td>
<td>R</td>
<td>F1</td>
</tr>
<tr>
<td>Word2Vec</td>
<td>39.95</td>
<td>13.27</td>
<td>18.25</td>
<td>28.89</td>
<td>46.98</td>
<td>32.59</td>
</tr>
<tr>
<td>GloVe</td>
<td>32.66</td>
<td>13.01</td>
<td>17.22</td>
<td>27.93</td>
<td>44.79</td>
<td>31.47</td>
</tr>
<tr>
<td>DWL (Scratch)</td>
<td>37.89</td>
<td>12.42</td>
<td>17.16</td>
<td>27.39</td>
<td>43.81</td>
<td>30.81</td>
</tr>
<tr>
<td>DWL (Finetune)</td>
<td>40.00</td>
<td>13.76</td>
<td>18.71</td>
<td>30.59</td>
<td>48.56</td>
<td>34.28</td>
</tr>
<tr>
<td>GWD-R</td>
<td>46.29</td>
<td>17.01</td>
<td>22.32</td>
<td>31.82</td>
<td>43.81</td>
<td>33.77</td>
</tr>
<tr>
<td>GWD-C</td>
<td>43.16</td>
<td>15.79</td>
<td>20.77</td>
<td>31.42</td>
<td>42.99</td>
<td>33.25</td>
</tr>
<tr>
<td>GWL-R</td>
<td>46.20</td>
<td>16.93</td>
<td>22.22</td>
<td>32.03</td>
<td>44.75</td>
<td>34.18</td>
</tr>
<tr>
<td>GWL-C</td>
<td>47.46</td>
<td>17.25</td>
<td>22.71</td>
<td>32.09</td>
<td>45.64</td>
<td>34.31</td>
</tr>
</tbody>
</table>
Overview of Part I

Part I: Recent Network Alignment (NA) Algorithms

- **Pairwise NA**
 - Consistency-based
 - w/o attributes
 - w/ attributes
 - Embedding-based
 - w/o attributes
 - w/ attributes
 - Optimal transport-based
 - w/o attributes

- **Collective NA**
 - Consistency-based
 - w/o attributes
 - w/ attributes
 - Embedding-based
 - w/o attributes

- **Higher-Order NA**
 - Consistency-based
 - Single-level
 - Multilevel
 - w/o attributes
 - w/ attributes

- **Related Tasks**
 - Entity alignment
 - Non-GNN based
 - GNN-based
 - Cross-layer inference
 - Cross-network transformation
Collective Network Alignment

• Goal: to find alignment across multiple networks

• Possible solution
 • Find pairwise alignment
 • Then combine
 • Transitivity constraint may be violated

• Problem setting:
 • Given: more than two networks $\mathcal{G} = \{\mathcal{G}_1, \cdots, \mathcal{G}_m\}$
 • Find: alignment across $\mathcal{G}_i, \mathcal{G}_j$ ($i, j = 1, \cdots, m$) jointly
Multiple Anonymized Social Networks Alignment

• Goal: to find anchor links/alignment across multiple networks without attributes
• Key challenge: how to preserve transitivity property
UMA – Unsupervised Pairwise Alignment

• Key idea: to minimize the alignment inconsistency
 • I.e., the number of non-shared edges between those mapped from $G^{(i)}$ and those in $G^{(j)}$

• Mathematical formulation

$$\bar{T}^{(i,j)} = \arg \min_{T^{(i,j)}} \left\| (T^{(i,j)})^\top S^{(i)} T^{(i,j)} - S(j) \right\|_F^2$$

s.t.
$$T^{(i,j)} \in \{0, 1\} |U^{(i)}| \times |U^{(j)}|,$$

$$T^{(i,j)} 1_{|U^{(j)}|} \preceq 1_{|U^{(i)}|},$$

$$T^{(i,j)}^\top 1_{|U^{(i)}|} \preceq 1_{|U^{(j)}|}.$$

one-to-one mapping constraints

• $S^{(i)}, S^{(j)}$: adjacency matrices of networks $G^{(i)}$ and $G^{(j)}$
• $T^{(i,j)}$: alignment matrix from $G^{(i)}$ to $G^{(j)}$

UMA – Transitivity Penalties

• Measure the number of inconsistent edges between the mapped from $\mathcal{G}^{(i)} \rightarrow \mathcal{G}^{(j)} \rightarrow \mathcal{G}^{(k)}$ and $\mathcal{G}^{(i)} \rightarrow \mathcal{G}^{(k)}$

• Mathematical formulation

$$ C(\{\mathcal{G}^{(i)}, \mathcal{G}^{(j)}, \mathcal{G}^{(k)}\}) = \left\| (T^{(j,k)})^\top (T^{(i,j)})^\top S^{(i)} T^{(i,j)} T^{(j,k)} - (T^{(i,k)})^\top S^{(i)} T^{(i,k)} \right\|_F^2 $$

• Extension to n ($n \geq 3$) networks

$$ C(\{\mathcal{G}^{(1)}, \mathcal{G}^{(2)}, \ldots, \mathcal{G}^{(n)}\}) = \sum_{\forall \{\mathcal{G}^{(i)}, \mathcal{G}^{(j)}, \mathcal{G}^{(k)}\} \subseteq \{\mathcal{G}^{(1)}, \mathcal{G}^{(2)}, \ldots, \mathcal{G}^{(n)}\}} C(\{\mathcal{G}^{(i)}, \mathcal{G}^{(j)}, \mathcal{G}^{(k)}\}) $$

UMA – Optimization Problem

- **Objective:** to minimize the alignment inconsistency and transitivity penalties simultaneously

- **Mathematical formulation**

\[
\begin{align*}
\mathbf{T}^{(i,j)}, \mathbf{T}^{(j,k)}, \mathbf{T}^{(k,i)} \\
= \arg \min_{\mathbf{T}^{(i,j)}, \mathbf{T}^{(j,k)}, \mathbf{T}^{(k,i)}} & \| (\mathbf{T}^{(i,j)})^\top \mathbf{S}^{(i)} \mathbf{T}^{(i,j)} - \mathbf{S}^{(j)} \|_F^2 \\
+ & \| (\mathbf{T}^{(j,k)})^\top \mathbf{S}^{(j)} \mathbf{T}^{(j,k)} - \mathbf{S}^{(k)} \|_F^2 + \| (\mathbf{T}^{(k,i)})^\top \mathbf{S}^{(k)} \mathbf{T}^{(k,i)} - \mathbf{S}^{(i)} \|_F^2 \\
+ & \alpha \| (\mathbf{T}^{(j,k)})^\top (\mathbf{T}^{(i,j)})^\top \mathbf{S}^{(i)} \mathbf{T}^{(i,j)} - \mathbf{T}^{(k,i)} \mathbf{S}^{(i)} (\mathbf{T}^{(k,i)})^\top \|_F^2
\end{align*}
\]

\[
\text{s.t.} \quad \mathbf{T}^{(i,j)} \in \{0, 1\}^{\mathcal{U}^{(i)} \times \mathcal{U}^{(j)}}, \quad \mathbf{T}^{(j,k)} \in \{0, 1\}^{\mathcal{U}^{(j)} \times \mathcal{U}^{(k)}} \\
\mathbf{T}^{(k,i)} \in \{0, 1\}^{\mathcal{U}^{(k)} \times \mathcal{U}^{(i)}}
\]

- Alignment inconsistency
- Transitivity penalties
- One-to-one constraints
- Relaxations
- Linear constraint + L1 norm

Uma – Transitive Network Matching

• Goal: to solve for binary variable $x_{l,m}^{(i,j)}$ indicating whether node u_l in $G^{(i)}$ is aligned with node u_m in $G^{(j)}$

• Optimization problem
 • Select high scores in alignment
 • One-to-one constraint
 • Transitivity constraint

\[
\max_{x^{(i,j)}, x^{(j,k)}, x^{(k,i)}} \sum_{l,m} x_{l,m}^{(i,j)} T^{(i,j)}(l,m) + \sum_{l,m} x_{l,m}^{(j,k)} T^{(j,k)}(l,m),
\]

s.t.
\[
\sum_{u_l^{(j)}} x_{l,m}^{(i,j)} \leq 1, \sum_{u_l^{(i)}} x_{l,o}^{(i,k)} \leq 1, \forall u_l^{(i)} \in U^{(i)},
\]
\[
\sum_{u_l^{(j)}} x_{m,l}^{(j,k)} \leq 1, \sum_{u_l^{(k)}} x_{m,o}^{(j,k)} \leq 1, \forall u_m^{(j)} \in U^{(j)},
\]
\[
\sum_{u_l^{(i)}} x_{o,l}^{(k,i)} \leq 1, \sum_{u_l^{(k)}} x_{o,m}^{(k,i)} \leq 1, \forall u_o^{(k)} \in U^{(k)},
\]
\[
x_{l,m}^{(i,j)} + x_{m,o}^{(j,k)} + x_{o,l}^{(k,i)} \neq 2, \forall l \in \{1, 2, \ldots, |U^{(i)}|\}, m \in \{1, 2, \ldots, |U^{(j)}|\}, o \in \{1, 2, \ldots, |U^{(k)}|\},
\]
\[
x_{l,m}^{(i,j)} \in \{0, 1\}, \forall u_l^{(i)} \in U^{(i)}, u_m^{(j)} \in U^{(j)}.
\]
\[
x_{m,o}^{(j,k)} \in \{0, 1\}, \forall u_m^{(j)} \in U^{(j)}, u_o^{(k)} \in U^{(k)}.
\]
\[
x_{o,l}^{(k,i)} \in \{0, 1\}, \forall u_o^{(k)} \in U^{(k)}, u_l^{(i)} \in U^{(i)}.
\]

UMA – Experimental Results

- **Dataset:** Stack Overflow, Super User and Programmers
- **Alignment performance**

References:

COSNET: Connecting Social Networks with Local and Global Consistency

• Intuitions: binary classification over node pairs
 • Instances: node pairs $X = \{x_i\}$
 • Labels: $Y = \{y_i\}$, $y_i = 1$ if x_i refers to same node, otherwise 0

• Factors considered:
 • Node feature consistency (e.g., user profiles)
 • Structural consistency
 • Global consistency (i.e., transitivity constraints)

COSNET – Node Feature Consistency

• Intuition: to encode the feature similarity for x_i

• Formulation:

$$E_l(Y, X) = \sum_i w_l^T g_l(x_i, y_i)$$

• $g_l(x_i, y_i)$ is a vector-valued feature function
 • Encodes the user profile similarity for node pair x_i
• w_l is the model parameter

COSNET – Structural Consistency

• Intuition:
 • If two nodes are aligned, their neighbors are likely to be aligned

• Matching graph $MG = (V_{MG}, E_{MG})$
 • Same as Kronecker product graph

• Pairwise formulation:

$$E_e(Y, X) = \sum_{\langle x_i, x_j \rangle \in E_{MG}} w_e^T f_e(y_i, y_j)$$

$$f_e(y_i, y_j) = \begin{cases}
(1, 0, 0)^T & \text{if } y_i = y_j = 0 \\
(0, 1, 0)^T & \text{if } y_i + y_j = 1 \\
(0, 0, 1)^T & \text{if } y_i = y_j = 1
\end{cases}$$

Definition 2 (Global Inconsistency). Given a set of social networks \mathbf{G}, a set of user pairs X and the corresponding labels Y, if there exists a sequence of user pairs $(x_{i_1}, x_{i_2}, \ldots, x_{i_n})$, such that

$$\forall i = i_1, i_2, \ldots, i_n, y_i = 1$$

and

$$\forall k = 1, 2, \ldots, n - 1, V^2_{i_k} = V^1_{i_{k+1}}$$

and

For the pair $\langle V^2_{i_n}, V^1_1 \rangle$, the corresponding label $y_j = 0$

then we say that the assigned labels Y causes global inconsistency given \mathbf{G} and X.

COSNET – Global Consistency

• Triadic closure in the matching graph

• Formulation:

\[E_t(Y, X) = \sum_{c \in T_{MG}} w_t^T f_t(Y_c) \]

\[f_t(y_i, y_j) = \begin{cases}
(1, 0, 0, 0)^\top & \text{if } |Y_c| = 0 \\
(0, 1, 0, 0)^\top & \text{if } |Y_c| = 1 \\
(0, 0, 1, 0)^\top & \text{if } |Y_c| = 2 \\
(0, 0, 0, 1)^\top & \text{if } |Y_c| = 3
\end{cases} \]
COSNET – Model Learning

• Objective function:

\[E(Y, X) = \sum_{x_i \in V_{MG}} w_l^T g_l(x_i, y_i) + \sum_{\langle x_i, x_j \rangle \in E_{MG}} w_e^T f_e(y_i, y_j) + \sum_{c \in T_{MG}} w_c^T f_c(Y_c) \]

• Define distance of two matching configurations \(Y \) and \(Y' \)

\[\Delta(Y, Y') = \sum_{x_i \in V_{MG}} \delta_l(y_i, y_i') + \sum_{c \in T_{MG}} \delta_c(Y_c, Y_c') + \sum_{\langle x_i, x_j \rangle \in E_{MG}} \delta_e(\langle y_i, y_j \rangle, \langle y'_i, y'_j \rangle) \]

Hamming distance
COSNET – Model Learning

• By max-margin theory:

\[
\min_W \frac{1}{2} ||W||^2 + \mu \xi \\
\text{s.t.} \quad E(\hat{Y}, X; W) \leq E(Y, X; W) - \Delta(Y, \hat{Y}) + \xi
\]

• \(\hat{Y}, Y\): input labeled configuration and learned configuration
• \(W = (w_l, w_e, w_t)\): model parameters
• \(\xi\): slack variable to handle non-separable data
• \(\mu\): trade-off between the maximum margin & error penalty
• Constraint: distance between the energy of \(\hat{Y}, Y\) at least \(\Delta(Y, \hat{Y})\)

COSNET – Model Learning

• The original problem is intractable.
• Use Lagrangian relaxation for dual decomposition

\[
\min_{W, \lambda} \frac{1}{2} \|W\|^2 + \mu (E(\hat{Y}, X; W) - \max_{\lambda} L(Y, X, \lambda; W))
\]

\[
\text{s.t. } \sum_{y_i \in Y_i} \lambda^f_i = 0, \ \forall f \in \mathcal{F}
\]

• \(f \in \mathcal{F}\): factor functions
• \(\lambda\): Lagrange multipliers

• Convex and non-differentiable
• Solution: projected sub-gradient method

COSNET – Public Dataset

• Data statistics

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Network</th>
<th>#Users</th>
<th>#Relationships</th>
</tr>
</thead>
<tbody>
<tr>
<td>SNS</td>
<td>Twitter</td>
<td>40,171,624</td>
<td>1,468,365,182</td>
</tr>
<tr>
<td></td>
<td>LiveJournal</td>
<td>3,017,286</td>
<td>87,037,567</td>
</tr>
<tr>
<td></td>
<td>Flickr</td>
<td>215,495</td>
<td>9,114,557</td>
</tr>
<tr>
<td></td>
<td>Last.fm</td>
<td>136,420</td>
<td>1,685,524</td>
</tr>
<tr>
<td></td>
<td>MySpace</td>
<td>854,498</td>
<td>6,489,736</td>
</tr>
<tr>
<td>Academia</td>
<td>LinkedIn</td>
<td>2,985,414</td>
<td>25,965,384</td>
</tr>
<tr>
<td></td>
<td>ArnetMiner</td>
<td>1,053,188</td>
<td>3,916,907</td>
</tr>
<tr>
<td></td>
<td>VideoLectures</td>
<td>11,178</td>
<td>786,353</td>
</tr>
</tbody>
</table>

• Link: https://www.aminer.cn/cosnet

COSNET – Experimental Results

• Connecting social media sites
 • Twitter, LiveJournal, Last.fm, Flickr, MySpace

COSNET – Experimental Results

- Connecting Aminer with LinkedIn and VideoLectures

Overview of Part I

Part I: Recent Network Alignment (NA) Algorithms

Pairwise NA
- Consistency-based
 - w/o attributes
 - w/ attributes
- Embedding-based
 - w/o attributes
 - w/ attributes
- Optimal transport-based
 - w/o attributes

Collective NA
- Consistency-based
 - w/o attributes
 - w/ attributes
- **Embedding-based**
 - w/o attributes

Higher-Order NA
- Consistency-based
 - Single-level
 - Multilevel

Related Tasks
- Entity alignment
 - Non-GNN based
 - GNN-based
- Cross-layer inference
- Cross-network transformation
Embedding-Based Collective Network Alignment

- Goal: to learn node embeddings that can infer alignment in the embedding space
Cross-Network Embedding for Multi-Network Alignment

• Motivations: networks heterogeneity
 • Different networks may own different semantic meanings;
 • Same node may have distinct embeddings in different networks

• Goal: to learn node embeddings for multiple network alignment

• Key question: how to capture the commonness among anchor node counterparts and specific semantics in different networks?

CrossMNA – Cross Network Embedding

• Key idea: split node embedding into two components

\[\mathbf{v}_i^k = \mathbf{Wu}_i + \mathbf{r}_k \]

• Intra-vector \(\mathbf{v}_i^k \): captures structural information in a network
• Inter-vector \(\mathbf{u}_i \): captures the commonness of anchor node
• Network vector \(\mathbf{r}_k \): captures network-specific semantics

CrossMNA – Experimental Results

• Multiple network alignment

Twitter dataset

Arxiv dataset

Precision@\(\alpha\) vs. \(\alpha\) Precision@30 vs. training ratio

CrossMNA – Experimental Results

• Multiple network link prediction

<table>
<thead>
<tr>
<th>Dataset</th>
<th>arXiv</th>
<th>SacchCere</th>
<th>Twitter</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>30% 50% 80%</td>
<td>30% 50% 80%</td>
<td>30% 50% 80%</td>
</tr>
<tr>
<td>DeepWalk</td>
<td>87.86 94.41 98.12</td>
<td>69.20 73.96 78.29</td>
<td>57.09 59.96 63.74</td>
</tr>
<tr>
<td>LINE</td>
<td>75.05 85.73 94.75</td>
<td>60.54 65.05 68.87</td>
<td>53.12 52.97 53.22</td>
</tr>
<tr>
<td>node2vec</td>
<td>88.06 94.57 97.11</td>
<td>71.15 76.33 80.16</td>
<td>56.84 61.22 65.93</td>
</tr>
<tr>
<td>PMNE</td>
<td>90.12 94.47 95.24</td>
<td>77.61 79.85 81.35</td>
<td>61.12 70.72 75.91</td>
</tr>
<tr>
<td>MELL</td>
<td>93.51 96.30 98.84</td>
<td>76.18 79.92 81.21</td>
<td>70.64 75.89 79.84</td>
</tr>
<tr>
<td>CrossMNA</td>
<td>96.46 97.53 99.19</td>
<td>76.88 81.12 82.59</td>
<td>75.85 80.48 85.29</td>
</tr>
</tbody>
</table>

Observation: CrossMNA performs better due to transmitting complementary information across networks.

CrossMNA – Experimental Results

• Scalability: memory usage

Observation: CrossMNA has less memory usage than other baseline methods.
Overview of Part I

Part I: Recent Network Alignment (NA) Algorithms

Pairwise NA
- Consistency-based
 - w/o attributes
 - w/ attributes
- Embedding-based
 - w/o attributes
 - w/ attributes
- Optimal transport-based
 - w/o attributes

Collective NA
- Consistency-based
 - w/o attributes
 - w/ attributes
- Embedding-based
 - w/o attributes

Higher-Order NA
- Consistency-based
 - Single-level
 - Multilevel
- Optimal transport-based
 - w/o attributes

Related Tasks
- Entity alignment
 - Non-GNN based
 - GNN-based
- Cross-layer inference
- Cross-network transformation
Higher-order Network Alignment

• Higher-order network mining:
 • Involves higher-order structures, instead of edges

• Motivations:
 • Traditional approaches (e.g., NetAlign) aim to maximize # of conserved edges (overlaps/squares).
 • Leverage higher-order structures exist in networks (e.g., motifs, clusters, etc.).

• Single-level: use higher-order structures to align nodes
• Multilevel: to align both nodes and clusters at multi-level
Triangular Alignment (TAME)

- Network motifs: connected subgraphs that occurs with significantly higher frequency
 - 3rd-order: 3-node line, triangle
 - kth-order: k-node star, etc.

- Objective: to maximize # of aligned substructures

TAME – Formulation #1

- **Binary quadratic program in NetAlign**

\[
\begin{align*}
\text{maximize} & \quad (1 - \alpha)w^T x + \frac{\alpha}{2} x^T S x \\
\text{subject to} & \quad Cx \leq 1_{|V_G|+|V_H|} \\
& \quad x(i'i') \in \{0, 1\}.
\end{align*}
\]

- **Higher-order extension**

\[
\begin{align*}
\text{maximize} & \quad (1 - \alpha)w^T x + \frac{\alpha}{m!} (\mathcal{T}_H \otimes \mathcal{T}_G)x^m \\
\text{subject to} & \quad Cx \leq 1_{|V_G|+|V_H|} \\
& \quad x(i'i') \in \{0, 1\}.
\end{align*}
\]

\[
x^T (\mathcal{T}_H \otimes \mathcal{T}_G)x^{m-1} = (\mathcal{T}_H \otimes \mathcal{T}_G)x^m
\]

- \(\mathcal{T}_H\) and \(\mathcal{T}_G\): the motif-tensors associated with a \(m\)-node motif in both graphs \(G\) and \(H\)

- \(\Delta_{H \times G} = \Delta_H \otimes \Delta_G\): Kronecker product of triangle tensors

- Counts # of conserved triangles

TAME – Formulation #2

• Relaxed formulation
 • Remove one-to-one constraint and relax x to be any reals
 • Add a 2-norm constraint on x to make it bounded

$$\max_x \quad (\Delta_{H \times G} x)^3$$
subject to \quad $\|x\| = 1.$

\rightarrow Tensor eigenvector problem

• The classic SS-HOPM is costly to solve it.

• Implicit kernel for computing tensor-vector products

$$(\Delta_{H \times G} x^2)_{ii'}$$
$$= \sum_{jj',kk'} \Delta_{H \times G}(ii',jj',kk')x(jj')x(kk')$$
$$= \sum_{jj',kk'} \Delta_G(i,j,k) \Delta_H(ii',jj',kk')X(jj')X(kk')$$
$$= \sum_{jj',kk'} \Delta_G(i,j,k) \sum_{jj'} X(jj') \sum_{kk'} \Delta_H(ii',jj',kk')X(kk')$$

$\Delta_{H \times G} x^2(ii') = 2 \sum_{(j,k) \in N_{\Delta_G}(i)} \sum_{(j',k')} X(jj')X(kk') + X(jj')X(kk').$$

TAME – Algorithm

• Key ideas:
 • To use implicit tensor-kernel product \(\tilde{x} = \Delta_{H\times G} x^2 \) for \(\Delta_{H\times G} x^3 = x^T \tilde{x} \)
 • SS-HOPM main loop computes topological similarity matrices
 • A score function to solve a bipartite max-weight matching

To encode integer constraint of \(X \) and one-to-one mapping constraint

TAME – Experimental Results

• Alignment quality on yeast vs. human dataset

Observation: TAME performs closely to the best method in preserving the # of conserved edges

TAME – Experimental Results

• Metric: # of conserved triangles

Observation: TAME ranks the highest in terms of the number of conserved triangles

Multilevel Network Alignment

- **Goals:** to find node correspondence as well as the correspondence among clusters at different levels
- **Motivation:**
 - Networks exhibit hierarchical cluster-within-clusters structure

Moana – Challenges

• C1: Alignment accuracy

• Errors propagate through levels

• C2: Scalability
 Better than quadratic?

Moana – Problem Definition

• Given:
 • (1) adjacency matrices \bar{A}_1, \bar{B}_1 of two undirected networks;
 • (2) a sparse prior alignment preference H_1;
 • (3) the number of levels $L \geq 2$ of interests.

• Find: a set of alignment matrices S_l at level-l, $l = 1, \ldots, L$
 • where S_1 indicates the alignment at the node level

Moana Formulation: Multilevel Optimization

• Generic strategy
 • coarsening \rightarrow alignment \rightarrow interpolation

• Alignment interpolations
 • Bilinear interpolations by $P_l \in \mathbb{R}^{p_l \times n_1}$, $Q_l \in \mathbb{R}^{q_l \times n_2}$ ($p_l \leq n_1, q_l \leq n_2$)
 • w.l.o.g., $S_1 = Q_1^T S_2 P_1$ between level-1 & level-2

Moana Formulation: Multilevel Optimization

- Multilevel alignment formulation

 Level-1: \[
 \min_{\mathbf{s}_1} \alpha \mathbf{s}_1^T (\mathbf{I} - \mathbf{A}_1 \otimes \mathbf{B}_1) \mathbf{s}_1 + (1 - \alpha) \| \mathbf{s}_1 - \mathbf{h}_1 \|_2^2
 \]

 Level-2: \[
 \min_{\mathbf{s}_2} \alpha \mathbf{s}_2^T (\mathbf{I} - \mathbf{A}_2 \otimes \mathbf{B}_2) \mathbf{s}_2 + (1 - \alpha) \| \mathbf{s}_2 - \mathbf{h}_2 \|_2^2
 \]

 If \(\mathbf{P}_1 \mathbf{P}_1^T = \mathbf{I} \) and \(\mathbf{Q}_1 \mathbf{Q}_1^T = \mathbf{I} \)

- \(\mathbf{A}_2 = \mathbf{P}_1 \mathbf{A}_1 \mathbf{P}_1^T, \mathbf{B}_2 = \mathbf{Q}_1 \mathbf{B}_1 \mathbf{Q}_1^T \) and \(\mathbf{H}_2 = \mathbf{Q}_1 \mathbf{H}_1 \mathbf{P}_1^T \)
- same properties (e.g., convexity) and algorithm as FINAL-P
- ‘good’ (semi-) orthogonal \(\mathbf{P}_1, \mathbf{Q}_1 \) make \(\mathbf{A}_2, \mathbf{B}_2 \) well-represented

Moana Formulation: Perfect Interpolation

• Denote S_l^*, S_{l+1}^* are optimal solutions at level-l and level-$(l + 1)$

• Perfect interpolation (to address error propagation):

 Interpolation from the optimal alignment matrix at level-$(l + 1)$ is equal to that at level-l

• If P_l, Q_l ($l = 1, \cdots, L - 1$) are orthogonal
• Then $S_l^* = Q_l^T S_{l+1}^* P_l$

Moana – Coarsening Algorithm

• Generic strategy
 • Coarsening \rightarrow alignment \rightarrow interpolation

• Network coarsening by P_l, Q_l
 • $A_{l+1} = P_l A_l P_l^T, B_{l+1} = Q_l B_l Q_l^T$

• Requirements on P_l, Q_l
 • Perfect interpolation: they are orthogonal matrix
 • Efficient computation: they are sparse matrix
 • Informative coarsening: they can uncover hierarchical cluster-within-clusters structures

Moana – Coarsening Algorithm

• Multiresolution matrix factorization

\[
\begin{align*}
S_{L-1} & \rightarrow \cdots \rightarrow S_2 & \rightarrow S_1 & \rightarrow A_1 & \rightarrow P_1^T & \rightarrow P_2 & \rightarrow \cdots & \rightarrow P_{L-1}^T & \rightarrow P_L \rightarrow \tilde{A}_L \\
S_{L-1} & \rightarrow \cdots \rightarrow S_2 & \rightarrow S_1 & \rightarrow B_1 & \rightarrow Q_1^T & \rightarrow Q_2 & \rightarrow \cdots & \rightarrow Q_{L-1}^T & \rightarrow Q_L \rightarrow \tilde{B}_L
\end{align*}
\]

• Coarsening procedure

\[
\begin{align*}
P_{L-1} & \cdots & P_2 P_1 A_1 P_1^T P_2^T & \cdots & P_{L-1}^T & = A_L & \rightarrow \tilde{A}_L \\
Q_{L-1} & \cdots & Q_2 Q_1 B_1 Q_1^T Q_2^T & \cdots & Q_{L-1}^T & = B_L & \rightarrow \tilde{B}_L
\end{align*}
\]

• \(\mathcal{S}(\mathcal{S}_{B_l}, \mathcal{S}_{A_l}) \) indicates the alignment among clusters at the \(l \)-th granularity

Moana – Alignment Algorithm

• Generic strategy
 • coarsening → alignment → interpolation

• Alignment across the coarsest networks

\[
\tilde{S}_L = \alpha \begin{bmatrix} \tilde{B}_{L_1} & 0 \\ 0 & \tilde{B}_{L_2} \end{bmatrix} \begin{bmatrix} \tilde{S}_{L_1} \\ \tilde{S}_{L_2} \end{bmatrix} \begin{bmatrix} \tilde{A}_{L_1} & 0 \\ 0 & \tilde{A}_{L_2} \end{bmatrix} + (1 - \alpha) \begin{bmatrix} \tilde{H}_{L_1} & \tilde{H}_{L_2} \\ \tilde{H}_{L_3} & \tilde{H}_{L_4} \end{bmatrix}
\]

\[
\begin{align*}
\tilde{S}_{L_1} &= \alpha \tilde{B}_{L_1} \tilde{S}_{L_1} \tilde{A}_{L_1} + (1 - \alpha) \tilde{H}_{L_1} \\
\tilde{S}_{L_2} &= \alpha \tilde{B}_{L_1} \tilde{S}_{L_2} \tilde{A}_{L_2} + (1 - \alpha) \tilde{H}_{L_2} \\
\end{align*}
\]

block-wise computation

\[
\begin{align*}
\tilde{S}_{L_3} &= \alpha \tilde{B}_{L_2} \tilde{S}_{L_3} \tilde{A}_{L_1} + (1 - \alpha) \tilde{H}_{L_3} \\
\tilde{S}_{L_4} &= (1 - \alpha) \left(I - \alpha \tilde{A}_{L_2} \otimes \tilde{B}_{L_3} \right)^{-1} \tilde{H}_{L_4}
\end{align*}
\]

• Alignment at finer levels
 • perfect interpolations: \(S_l = Q_l^T S_{l+1} P_l \)

Moana – Experimental Setups

• Datasets
 • Gr-Qc network vs. its permutation (nodes: 5,241 vs. 5,241)
 • Google+ vs. its permutation (nodes: 23,628 vs. 23,628)
 • Amazon co-purchasing networks (nodes: 74,596 vs. 66,951)
 • ACM vs DBLP coauthor networks (nodes: 9,872 vs. 9,916)

Moana – Experimental Results

Observations: (1) the performance of Moana is close to FINAL-P; (2) Moana outperforms all other methods.

Moana – Experimental Results

Observation: Moana achieves a good performance in cluster alignment at different levels.

Moana – Experimental Results

Observation: Moana can unveil meaningful alignment of clusters at different granularities.

Moana – Experimental Results

Observation: (1) Moana scales linearly w.r.t. the number of edges; (2) Moana scales linearly w.r.t. the number of nonzero elements in H_1.

Overview of Part I

Part I: Recent Network Alignment (NA) Algorithms

- Pairwise NA
 - Consistency-based
 - w/o attributes
 - w/ attributes
 - Embedding-based
 - w/o attributes
 - w/ attributes
 - Optimal transport-based
 - w/o attributes

- Collective NA
 - Consistency-based
 - w/o attributes
 - w/ attributes
 - Embedding-based
 - w/o attributes

- Higher-Order NA
 - Consistency-based
 - Single-level
 - Multilevel

- Related Tasks
 - Entity alignment
 - Non-GNN based
 - GNN-based
 - Cross-layer inference
 - Cross-network transformation
Entity Alignment

• Goal: to link entities among multiple knowledge graphs
• Problem Definition:
 • Given KGs \(\{ KG_i \mid KG_i = (E_i, R_i, T_i) \} \) and seed alignment \(\mathcal{L} \);
 • Find all the aligned entities
Iterative Entity Alignment via Joint Knowledge Embeddings

• Key components:
 • Knowledge embedding: TransE, PTransE
 • Joint embedding: translation-based, linear transformation
 • Iterative alignment: adding newly aligned entities

IITransE – Knowledge Embeddings

• TransE: relations as translating vectors

\[E(h, r, t) = \|h + r - t\| \]

• Loss function:

\[L(h, r, t) = \sum_{(h', r', t') \in T^-} [\gamma + E(h, r, t) - E(h', r', t')]+ \]

• Negative samples:

\[T^- = \{(h', r, t)|h' \in E\} \cup \{(h, r, t')|t' \in E\} \cup \{(h, r', t)|r' \in R\}, \quad (h, r, t) \in T. \]

• PTransE: to encode multi-step relation path

\[E(p, r) = \|p - r\| = \|p - (t - h)\| = E(h, p, t) \]

ITransE – Joint Embeddings

• Key idea: to join embeddings in a unified space

• Translation-based model:
 • Key idea: view alignment as a special relation
 • Formulation: given $e_1 \in E_1, e_2 \in E_2 \rightarrow e_1 + r^{(E_1 \rightarrow E_2)} \approx e_2$

$$E(e_1, e_2) = ||e_1 + r^{(E_1 \rightarrow E_2)} - e_2||.$$

• Linear transformation model:
 • Key idea: embedding space can be transformed linearly
 • Formulation: transformation matrix $M^{(E_1 \rightarrow E_2)}$

$$E(e_1, e_2) = ||M^{(E_1 \rightarrow E_2)}e_1 - e_2||.$$

ITransE – Iterative Alignment

• Key idea: iteratively adding newly aligned entities

• Soft alignment:
 • Reliability scores of newly aligned entities
 \[R(e_1, e_2) = \sigma \left(k(\theta - E(e_1, e_2)) \right) \]

 • Score function for soft alignment
 \[I_S = \sum_{(e_1, e_2) \in M} R(e_1, e_2)(\mathcal{H}(e_1, e_2) + \mathcal{H}(e_2, e_1)), \]
 \[\mathcal{H}(e_1, e_2) = \sum_{(e_1, r, t)} U(e_2, r, t) + \sum_{(h, r, e_1)} U(h, r, e_2), \]

 • Limit # of newly aligned entities to a threshold in each alignment procedure

ITransE – Experimental Results

• Dataset: DFB1, DFB2, DFB3 from FB15K
• Entity alignment performance
 • ITransE: iterative alignment w/ TransE
 • IPTransE: iterative alignment w/ PTransE

<table>
<thead>
<tr>
<th>Metric</th>
<th>DFB-1 Hits@1</th>
<th>Hits@10</th>
<th>Mean Rank</th>
<th>DFB-2 Hits@1</th>
<th>Hits@10</th>
<th>Mean Rank</th>
<th>DFB-3 Hits@1</th>
<th>Hits@10</th>
<th>Mean Rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>MTransE (LT)</td>
<td>38.9</td>
<td>61.0</td>
<td>237.7</td>
<td>12.3</td>
<td>33.8</td>
<td>419.2</td>
<td>6.5</td>
<td>22.0</td>
<td>699.8</td>
</tr>
<tr>
<td>MTransE (TB)</td>
<td>13.6</td>
<td>35.1</td>
<td>547.7</td>
<td>13.9</td>
<td>35.4</td>
<td>675.7</td>
<td>4.5</td>
<td>16.1</td>
<td>1255.5</td>
</tr>
<tr>
<td>TransE + PS</td>
<td>61.9</td>
<td>79.2</td>
<td>105.2</td>
<td>41.1</td>
<td>67.0</td>
<td>154.9</td>
<td>12.2</td>
<td>34.6</td>
<td>431.9</td>
</tr>
<tr>
<td>ITransE (HA)</td>
<td>62.6</td>
<td>78.9</td>
<td>100.0</td>
<td>41.2</td>
<td>66.9</td>
<td>151.9</td>
<td>12.3</td>
<td>33.7</td>
<td>432.3</td>
</tr>
<tr>
<td>ITransE (SA)</td>
<td>67.1</td>
<td>83.1</td>
<td>80.1</td>
<td>57.7</td>
<td>77.7</td>
<td>109.3</td>
<td>16.2</td>
<td>40.9</td>
<td>367.2</td>
</tr>
<tr>
<td>PTransE + PS</td>
<td>65.8</td>
<td>83.4</td>
<td>62.9</td>
<td>46.3</td>
<td>72.1</td>
<td>96.8</td>
<td>15.8</td>
<td>40.2</td>
<td>346.9</td>
</tr>
<tr>
<td>IPTransE (HA)</td>
<td>66.1</td>
<td>83.3</td>
<td>59.1</td>
<td>46.2</td>
<td>72.6</td>
<td>94.2</td>
<td>15.1</td>
<td>39.7</td>
<td>337.6</td>
</tr>
<tr>
<td>IPTransE (SA)</td>
<td>71.7</td>
<td>86.5</td>
<td>49.0</td>
<td>63.5</td>
<td>82.2</td>
<td>67.5</td>
<td>20.4</td>
<td>47.4</td>
<td>281.0</td>
</tr>
</tbody>
</table>

Observations:
• IPTransE performs better than ITransE
• Soft alignment performs better than hard alignment

ITransE – Experimental Results

• Effectiveness of soft alignment strategy

Observation: the performance of all methods increase with iterations.

Knowledge Graph Alignment via Graph Convolutional Networks

• Key idea: use GCNs to embed entities where aligned entities are expected to be as close as possible.

• Assumptions:
 • Equivalent entities tend to have similar attributes
 • Equivalent entities are neighbored by other equivalent entities

• Embedding framework:

\[
\begin{align*}
[H_s^{(l+1)}; H_a^{(l+1)}] \\
= \sigma \left(\hat{D}^{-\frac{1}{2}} \hat{A} \hat{D}^{-\frac{1}{2}} [H_s^{(l)} W_s^{(l)}; H_a^{(l)} W_a^{(l)}] \right)
\end{align*}
\]

GCN-Align – Construct Adjacency Matrix

• KGs are relational multi-graphs (i.e., typed relations)
• Key idea: two measures on relations

Relation functionality: \(\text{fun}(r) = \frac{\#\text{Head}_\text{Entities}_\text{of}_r}{\#\text{Triples}_\text{of}_r} \)

Inverse functionality: \(\text{ifun}(r) = \frac{\#\text{Tail}_\text{Entities}_\text{of}_r}{\#\text{Triples}_\text{of}_r} \)

• Edge weight: influence of \(i \)-th entity over \(j \)-th entity

\[
a_{ij} = \sum_{\langle e_i, r, e_j \rangle \in G} \text{ifun}(r) + \sum_{\langle e_j, r, e_i \rangle \in G} \text{fun}(r)
\]

GCN-Align – Alignment Prediction

- Model training:
 - Margin-based rank loss for both h_s and h_a
 - h_s: structure embedding
 - h_a: attribute embedding
- Small distance for aligned entities for prediction

$$D(e_i, v_j) = \beta \frac{\|h_s(e_i) - h_s(v_j)\|_1}{d_s} + (1 - \beta) \frac{\|h_a(e_i) - h_a(v_j)\|_1}{d_a}$$

- d_s, d_a: dimensions of structure and attribute embedding
- β: hyperparameter balancing importance of two embeddings
- For each entity e_i, return a list of candidate entities in KG_2

GCN-Align – Experimental Results

• Datasets: DBP15K from DBpedia with different languages

DBP15K_{JA-EN}						
	JA → EN	EN → JA				
	Hits@1	Hits@10	Hits@50	Hits@1	Hits@10	Hits@50
*JE	18.92	39.97	54.24	17.80	38.44	52.48
*MTransE	27.86	57.45	75.94	23.72	49.92	67.93
*JAPE	33.10	63.90	80.80	29.71	56.28	73.84
	34.27	66.39	83.61	31.40	60.80	78.51
	36.25	68.50	85.35	38.37	67.27	82.65
JAPE’	29.80	60.61	80.03	25.34	53.36	71.94
	29.35	63.31	82.76	26.37	57.35	76.87
	31.06	64.11	81.57	32.45	62.21	79.08
GCN	38.21	72.49	82.69	36.90	68.50	79.51
	39.91	74.46	86.10	38.42	71.81	83.72

DBP15K_{FR-EN}						
	FR → EN	EN → FR				
	Hits@1	Hits@10	Hits@50	Hits@1	Hits@10	Hits@50
*JE	15.38	38.84	56.50	14.61	37.25	54.01
*MTransE	24.41	55.55	74.41	21.26	50.60	69.93
*JAPE	29.55	62.18	79.36	25.40	56.55	74.96
	29.63	64.55	81.90	26.55	60.30	78.71
	32.39	66.68	83.19	32.97	65.91	82.38
JAPE’	28.23	60.99	78.47	24.68	55.25	74.19
	27.58	62.03	79.98	24.93	58.95	77.79
	30.21	65.81	82.57	31.42	63.86	80.95
GCN	36.51	73.42	85.93	36.08	72.37	85.44
	37.29	74.49	86.73	36.77	73.06	86.39

Overview of Part I

Part I: Recent Network Alignment (NA) Algorithms

- Pairwise NA
 - Consistency-based
 - w/o attributes
 - w/ attributes
 - Embedding-based
 - w/o attributes
 - w/ attributes
 - Optimal transport-based
 - w/o attributes

- Collective NA
 - Consistency-based
 - w/o attributes
 - w/ attributes
 - Embedding-based
 - w/o attributes

- Higher-Order NA
 - Consistency-based
 - Single-level
 - Multilevel
 - Embedding-based
 - w/o attributes

- Related Tasks
 - Entity alignment
 - Non-GNN based
 - GNN-based
 - Cross-layer inference
 - Cross-network transformation
Multi-layered Networks

• An example of multi-layered networks

Cross-Layer Dependency Inference

• Given: a multi-layered network
 • Layer-layer dependency matrix G
 • Within-layer connectivity matrices $\mathcal{A} = \{A_1, \cdots, A_g\}$
 • Observed cross-layer dependency matrices $\mathcal{D} = \{D_{ij}\}$
• Find: true cross-layer dependency matrices $\{\tilde{D}_{ij}\}$
• To link different types of nodes (alignment links same)
 • A_1 for chemical network, etc.
 • $G(1,2) = 1$, $G(1,3) = 0$
 • D_{12} are represented by solid arrows between \mathcal{G}_1 and \mathcal{G}_2

Fascinate – Formulation

• Key idea: as a collective collaborative filtering problem
 • Within-layer networks as user-user network, item-item similarity network, etc.
 • Cross-layer dependency as user-item ratings

• Optimization problem:

\[
J = \min_{F_i \geq 0(i=1,\ldots,g)} \sum_{i,j: \mathbf{G}(i,j)=1} \left\| \mathbf{W}_{i,j} \odot (\mathbf{D}_{i,j} - \mathbf{F}_i \mathbf{F}_j^t) \right\|_F^2
\]

\[+ \alpha \sum_{i=1}^{g} \text{tr}(\mathbf{F}_i^t(\mathbf{T}_i - \mathbf{A}_i)\mathbf{F}_i) + \beta \sum_{i=1}^{g} \| \mathbf{F}_i \|_F^2\]

C1: Matching Observed Cross-Layer Dependencies
C2: Node Homophily
C3: Regularization

Fascinate – Optimization Algorithm

• Block coordinate descent method
• For each F_i, use multiplicative update method

\[
\frac{\partial J_i}{\partial F_i} = 2 \sum_{j: G(i,j)=1} \left[-(W_{i,j} \odot W_{i,j} \odot D_{i,j})F_j + (W_{i,j} \odot W_{i,j} \odot (F_i F_j'))F_j \right] + \alpha T_i F_i - \alpha A_i F_i + \beta F_i
\]

\[
F_i(u,v) \leftarrow F_i(u,v) \sqrt{\frac{X(u,v)}{Y(u,v)}},\text{ where}
\]

\[
X = \sum_{j: G(i,j)=1} (W_{i,j} \odot W_{i,j} \odot D_{i,j})F_j + \alpha A_i F_i
\]

\[
Y = \sum_{j: G(i,j)=1} (W_{i,j} \odot W_{i,j} \odot (F_i F_j'))F_j + \alpha T_i F_i + \beta F_i
\]

Fascinate – Experimental Setups

• Datasets:

<table>
<thead>
<tr>
<th>Dataset</th>
<th># of Layers</th>
<th># of Nodes</th>
<th># of Links</th>
<th># of CrossLinks</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOCIAL</td>
<td>3</td>
<td>125,344</td>
<td>214,181</td>
<td>188,844</td>
</tr>
<tr>
<td>BIO</td>
<td>3</td>
<td>35,631</td>
<td>253,827</td>
<td>75,456</td>
</tr>
<tr>
<td>INFRA-5</td>
<td>5</td>
<td>349</td>
<td>379</td>
<td>565</td>
</tr>
<tr>
<td>INFRA-3</td>
<td>3</td>
<td>15,126</td>
<td>29,861</td>
<td>28,023,500</td>
</tr>
</tbody>
</table>

• Abstract dependency structure

Fascinate – Experimental Results

• Effectiveness of dependency inference on BIO

Fascinate – Experimental Results

• Effectiveness of dependency inference on INFRA-5

<table>
<thead>
<tr>
<th>Methods</th>
<th>MAP</th>
<th>R-MPR</th>
<th>HLU</th>
<th>AUC</th>
<th>Prec@10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fascinate</td>
<td>0.5040</td>
<td>0.3777</td>
<td>67.2231</td>
<td>0.8916</td>
<td>0.2500</td>
</tr>
<tr>
<td>Fascinate-Clust</td>
<td>0.4297</td>
<td>0.3220</td>
<td>56.8215</td>
<td>0.8159</td>
<td>0.2340</td>
</tr>
<tr>
<td>MulCol</td>
<td>0.4523</td>
<td>0.3239</td>
<td>59.8115</td>
<td>0.8329</td>
<td>0.2413</td>
</tr>
<tr>
<td>PairSid</td>
<td>0.3948</td>
<td>0.2392</td>
<td>49.5484</td>
<td>0.7413</td>
<td>0.2225</td>
</tr>
<tr>
<td>PairCol</td>
<td>0.3682</td>
<td>0.2489</td>
<td>48.5966</td>
<td>0.7406</td>
<td>0.2309</td>
</tr>
<tr>
<td>PairNMF</td>
<td>0.1315</td>
<td>0.0464</td>
<td>15.7148</td>
<td>0.5385</td>
<td>0.0711</td>
</tr>
<tr>
<td>PairRec</td>
<td>0.0970</td>
<td>0.0099</td>
<td>9.4853</td>
<td>0.5184</td>
<td>0.0399</td>
</tr>
<tr>
<td>FlatNMF</td>
<td>0.3212</td>
<td>0.2697</td>
<td>44.4654</td>
<td>0.7622</td>
<td>0.1999</td>
</tr>
<tr>
<td>FlatRec</td>
<td>0.1020</td>
<td>0.0778</td>
<td>11.5598</td>
<td>0.5740</td>
<td>0.0488</td>
</tr>
</tbody>
</table>

Overview of Part I

Part I: Recent Network Alignment (NA) Algorithms

- **Pairwise NA**
 - Consistency-based
 - w/o attributes
 - w/ attributes
 - Embedding-based
 - w/o attributes
 - w/ attributes
 - Optimal transport-based
 - w/o attributes

- **Collective NA**
 - Consistency-based
 - w/o attributes
 - w/ attributes
 - Embedding-based
 - w/o attributes
 - w/ attributes

- **Higher-Order NA**
 - Consistency-based
 - Single-level
 - Multilevel

- **Related Tasks**
 - Entity alignment
 - Non-GNN based
 - GNN-based
 - Cross-layer inference
 - Cross-network transformation
Cross-Network Node Associations

- Goal: to find node associations across different networks

Limitations of Traditional Methods

- Linear and/or consistency assumptions
 \[
 \min \| B_0 - PA_0P^T \|_F^2 \\
 \min \| \text{vec}(B_0) - \tilde{P} \text{vec}(A_0) \|_2^2
 \]
 Graph matching-based network alignment

- Embedding space disparity issue

\[
\min \| R - U_1^T U_2 \|_F^2 + \alpha \sum \text{Tr}(U_i^T(D_i - A_i)U_i)
\]
Factorization-based recommendation and cross-layer dependency inference

Cross-Network Transformation

- **Given:** (1) Source and target networks $G_1 = \{V_1, A_0, X_0\}$, $G_2 = \{V_2, B_0, Y_0\}$; Observed cross-network node associations L
- **Output:** (1) Cross-network transformation function g, s.t. $g(G_1) \approx G_2$; (2) Node association function g_{node}

NetTrans – Model Overview

- Key idea: encoder-decoder architecture
 - Encoder: to coarsen source network at different resolutions
 - Decoder: to reconstruct target network at different resolutions

NetTrans – Encoder

• Key component: TransPool as a pooling layer
• Supernode selection
 • Self-attention-based pooling

NetTrans – Encoder

- Supernode representation learning
 - Attention-based message passing
 - Aggregation by node-to-supernode assignment

NetTrans – Encoder

- **Node-to-supernode assignment**
 - Gumbel softmax to approximate P
 - Supernode candidate pruning

NetTrans – Encoder

• Supernode connections
• Use auxiliary connections \widehat{A}_l

$$A_l = \frac{1}{2} \left(A_{l-1}(I, I) + \widehat{A}_l \right)$$

NetTrans – Decoder

- **Goal:** to reconstruct target network
- **Key idea:** same latent meanings of supernodes
 - **Part #1:** leverage \mathcal{G}_1 by skip connections
 - **Part #2:** calibrate part #1 from supernodes to nodes

NetTrans – Experimental Results

- Effectiveness of NetTrans for network alignment

<table>
<thead>
<tr>
<th></th>
<th>Cora1-Cora2</th>
<th></th>
<th>ACM-DBLP</th>
<th></th>
<th>Foursquare-Twitter</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Accuracy</td>
<td></td>
<td>Accuracy</td>
<td>Hits@10</td>
<td>Hits@30</td>
</tr>
<tr>
<td>NetTrans</td>
<td>90.98%</td>
<td>97.51%</td>
<td>89.89%</td>
<td>84.09%</td>
<td>94.52%</td>
<td>58.21%</td>
</tr>
<tr>
<td>FINAL-N</td>
<td>88.73%</td>
<td>90.77%</td>
<td>87.58%</td>
<td>82.91%</td>
<td>90.71%</td>
<td>54.39%</td>
</tr>
<tr>
<td>FINAL-P</td>
<td>62.28%</td>
<td>80.01%</td>
<td>54.34%</td>
<td>69.70%</td>
<td>83.12%</td>
<td>36.34%</td>
</tr>
<tr>
<td>REGAL</td>
<td>60.90%</td>
<td>69.20%</td>
<td>46.26%</td>
<td>63.68%</td>
<td>71.80%</td>
<td>41.78%</td>
</tr>
<tr>
<td>IONE</td>
<td>73.03%</td>
<td>79.92%</td>
<td>42.29%</td>
<td>58.93%</td>
<td>84.19%</td>
<td>33.00%</td>
</tr>
<tr>
<td>CrossMNA</td>
<td>59.06%</td>
<td>68.62%</td>
<td>33.26%</td>
<td>42.54%</td>
<td>49.69%</td>
<td>21.04%</td>
</tr>
</tbody>
</table>

Observation: NetTrans outperforms all other baselines for network alignment task

NetTrans – Experimental Results

• Effectiveness of NetTrans for social recommendation

<table>
<thead>
<tr>
<th></th>
<th>Ciao-0.2</th>
<th>Ciao-0.3</th>
<th>Ciao-0.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prec@10</td>
<td>Rec@10</td>
<td>Rec@50</td>
<td>Prec@10</td>
</tr>
<tr>
<td>NetTrans</td>
<td>13.87%</td>
<td>11.08%</td>
<td>29.90%</td>
</tr>
<tr>
<td>BPR</td>
<td>1.37%</td>
<td>0.6%</td>
<td>20.25%</td>
</tr>
<tr>
<td>wpZAN</td>
<td>11.99%</td>
<td>9.19%</td>
<td>20.77%</td>
</tr>
<tr>
<td>GraphRec</td>
<td>8.65%</td>
<td>6.62%</td>
<td>17.56%</td>
</tr>
<tr>
<td>SamWalker</td>
<td>4.94%</td>
<td>1.97%</td>
<td>5.98%</td>
</tr>
<tr>
<td>NGCF</td>
<td>2.77%</td>
<td>1.21%</td>
<td>3.26%</td>
</tr>
</tbody>
</table>

Observation: NetTrans outperforms all other baselines for recommendation task

RoadMap

• Motivations and Background ✓
• Part I: Recent Network Alignment Algorithms ✓
• Part II: Network Alignment Applications
• Part III: Future Research Directions
Overview of Part II

Part II: Network Alignment Applications

Social Analysis
- User identity linkage
- Recommendation
 - Friends
 - Products
- Information diffusion

Bioinformatics
- Identify functional orthologs and knowledge transfer
 - Evolutionary relationships
 - Human aging
- Connectome Analysis

Knowledge Base
- Knowledge completion

Security
- Modeling adversarial activities
Social Analysis – User Identity Linkage

• User Identity Linkage
 • To identify the same physical user across social platforms

• Can be used for de-anonymization, information integration, etc.
User Identity Linkage

• Existing methods:
 • Profile based [Zafarani’13, Zhang’14, Perito’11, Vosecky’09]
 • Network based [Zhou’16, Zhang’15, Liu’16]
 • Profile + network based [Zhang’15, Shen’14, Zhang’16]

• Network-based can be considered as network alignment w/o attributes.

• Profile + network-based methods can be viewed as network alignment w/ attributes.
Social Analysis - Recommendation

• Friend recommendation:
 • For two social networks, if we know
 • User u_1 is a friend of user u_2 in G_1
 • User v_1 in G_2 and user u_1 in G_1 are same person
 • User v_2 in G_2 and user u_2 in G_2 are same person
 • But user v_1 and user v_2 are not friend in G_2
 • Then, we can recommend v_1 to user v_2

Cross-Site Friend Recommendation

- Think of it as a cross-site link prediction problem
- Given two incomplete social networks, we jointly solve network alignment and link prediction problems

![Diagram of network alignment and link prediction]

- : Observed edges
- : Imputed edges
- : Alignment
CENALP – Network Embedding

• DeepWalk-based network embedding
 • Key idea: build a world-view graph
 \[
 W = \begin{bmatrix}
 q \cdot P_{gg} & (1 - q) \cdot P_{gg'} \\
 (1 - q) \cdot P_{gg'} & q \cdot P_{gg'}
 \end{bmatrix}
 \]
 • Within-network node sampling with a probability of \(q\), and cross-network sampling with \((1 - q)\)
 • Allows for cross-network Skip-gram embedding

• Construction of \(P_{gg'}\) by structure and attribute
 \[
 \text{dist} = \left(\min_{d \in s_k(u)} \log(d + 1) - \min_{d \in s_k(u')} \log(d + 1) \right) + \left(\max_{d \in s_k(u)} \log(d + 1) - \max_{d \in s_k(u')} \log(d + 1) \right)
 \]
 \[
 \text{sim}_{\text{attr}}(u, u') = \frac{Y_u^\top \cdot Y_{u'}}{||Y_u||_2 \cdot ||Y_{u'}||_2},
 \]

CENALP – Network Alignment and Link Prediction

• Greedy alignment by embedding-based similarity
 • Given embeddings of \(u, u' \) in two networks
 \[
 \text{sim}_{\text{emb}}(u, u') = \frac{x_u^T \cdot x_{u'}}{\|x_u\|_2 \cdot \|x_{u'}\|_2}
 \]
 • Greedy-based alignment objective
 \[
 u^*, u'^* = \arg \max_{u, u'} \text{sim}_{\text{emb}}(u, u')
 \]

• Embedding for link prediction

CENALP – Algorithm

• Objective function

\[
\mathcal{L} = \sum_{\omega \in \text{walks}} \sum_{u_t \in \omega} \left[\sum_{u_j \in C_{u_t}} \log \sigma (x_{u_j}^{\text{out}} \cdot x_{u_t}^{\text{in}})
+ \sum_{k=1}^{K_{\text{neg}}} \mathbb{E}_{u_k \sim R_k(u)} \log \sigma (-x_{u_k}^{\text{out}} \cdot x_{u_t}^{\text{in}}) \right].
\]

• Overall procedure

CENALP – Experimental Results

- AUC score of link prediction

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Method</th>
<th>95%</th>
<th>90%</th>
<th>85%</th>
<th>80%</th>
<th>75%</th>
<th>70%</th>
<th>65%</th>
<th>60%</th>
<th>55%</th>
<th>50%</th>
</tr>
</thead>
<tbody>
<tr>
<td>DBLP</td>
<td>JC [11]</td>
<td>92.28%</td>
<td>90.93%</td>
<td>90.37%</td>
<td>88.44%</td>
<td>85.43%</td>
<td>84.12%</td>
<td>80.51%</td>
<td>77.99%</td>
<td>74.81%</td>
<td>72.16%</td>
</tr>
<tr>
<td></td>
<td>AA [12]</td>
<td>92.33%</td>
<td>91.01%</td>
<td>90.30%</td>
<td>88.32%</td>
<td>85.44%</td>
<td>84.07%</td>
<td>80.48%</td>
<td>77.94%</td>
<td>74.82%</td>
<td>72.14%</td>
</tr>
<tr>
<td></td>
<td>SC [13]</td>
<td>78.84%</td>
<td>78.89%</td>
<td>78.68%</td>
<td>78.54%</td>
<td>74.72%</td>
<td>77.21%</td>
<td>76.83%</td>
<td>75.87%</td>
<td>73.91%</td>
<td>74.40%</td>
</tr>
<tr>
<td></td>
<td>n2v [22]</td>
<td>78.40%</td>
<td>81.34%</td>
<td>78.72%</td>
<td>78.32%</td>
<td>75.01%</td>
<td>74.30%</td>
<td>73.32%</td>
<td>71.60%</td>
<td>70.56%</td>
<td>68.61%</td>
</tr>
<tr>
<td>DBLP</td>
<td>n2v+LR</td>
<td>95.58%</td>
<td>95.44%</td>
<td>94.30%</td>
<td>94.30%</td>
<td>92.37%</td>
<td>93.07%</td>
<td>90.86%</td>
<td>90.80%</td>
<td>89.25%</td>
<td>88.08%</td>
</tr>
<tr>
<td>disturbed copy</td>
<td>CLF [8]</td>
<td>96.92%</td>
<td>96.55%</td>
<td>95.70%</td>
<td>95.69%</td>
<td>94.43%</td>
<td>94.28%</td>
<td>92.95%</td>
<td>92.93%</td>
<td>92.23%</td>
<td>90.68%</td>
</tr>
<tr>
<td></td>
<td>MNN [43]</td>
<td>98.13%</td>
<td>97.76%</td>
<td>97.57%</td>
<td>97.28%</td>
<td>97.10%</td>
<td>96.78%</td>
<td>96.38%</td>
<td>96.44%</td>
<td>96.03%</td>
<td>95.86%</td>
</tr>
<tr>
<td></td>
<td>CE-CLF</td>
<td>98.37%</td>
<td>98.29%</td>
<td>97.88%</td>
<td>97.80%</td>
<td>97.34%</td>
<td>96.74%</td>
<td>96.75%</td>
<td>96.56%</td>
<td>96.09%</td>
<td>95.86%</td>
</tr>
<tr>
<td></td>
<td>CELP</td>
<td>98.48%</td>
<td>98.39%</td>
<td>98.36%</td>
<td>98.57%</td>
<td>98.28%</td>
<td>98.49%</td>
<td>98.58%</td>
<td>98.31%</td>
<td>98.38%</td>
<td>98.27%</td>
</tr>
<tr>
<td></td>
<td>CENALP</td>
<td>99.65%</td>
<td>99.27%</td>
<td>99.35%</td>
<td>99.38%</td>
<td>99.36%</td>
<td>99.08%</td>
<td>99.01%</td>
<td>99.29%</td>
<td>99.25%</td>
<td>99.06%</td>
</tr>
<tr>
<td>Facebook</td>
<td>JC [11]</td>
<td>74.76%</td>
<td>77.89%</td>
<td>76.94%</td>
<td>75.64%</td>
<td>73.15%</td>
<td>72.63%</td>
<td>70.48%</td>
<td>68.90%</td>
<td>67.25%</td>
<td>65.12%</td>
</tr>
<tr>
<td></td>
<td>AA [12]</td>
<td>74.77%</td>
<td>77.54%</td>
<td>76.57%</td>
<td>75.76%</td>
<td>73.36%</td>
<td>72.68%</td>
<td>71.09%</td>
<td>68.84%</td>
<td>67.19%</td>
<td>65.18%</td>
</tr>
<tr>
<td></td>
<td>SC [13]</td>
<td>84.39%</td>
<td>83.39%</td>
<td>86.88%</td>
<td>84.53%</td>
<td>83.83%</td>
<td>83.79%</td>
<td>81.56%</td>
<td>80.80%</td>
<td>81.81%</td>
<td>77.61%</td>
</tr>
<tr>
<td>Twitter</td>
<td>n2v [22]</td>
<td>75.62%</td>
<td>78.94%</td>
<td>78.23%</td>
<td>79.36%</td>
<td>76.18%</td>
<td>75.25%</td>
<td>74.64%</td>
<td>74.86%</td>
<td>74.49%</td>
<td>71.16%</td>
</tr>
<tr>
<td></td>
<td>n2v+LR</td>
<td>82.20%</td>
<td>85.58%</td>
<td>83.04%</td>
<td>84.51%</td>
<td>81.64%</td>
<td>82.07%</td>
<td>81.17%</td>
<td>80.02%</td>
<td>78.08%</td>
<td>78.04%</td>
</tr>
<tr>
<td></td>
<td>CLF [8]</td>
<td>84.88%</td>
<td>85.02%</td>
<td>86.18%</td>
<td>86.70%</td>
<td>84.00%</td>
<td>83.99%</td>
<td>82.95%</td>
<td>82.43%</td>
<td>81.96%</td>
<td>80.75%</td>
</tr>
<tr>
<td></td>
<td>MNN [43]</td>
<td>95.72%</td>
<td>96.44%</td>
<td>96.28%</td>
<td>96.30%</td>
<td>96.21%</td>
<td>96.25%</td>
<td>96.07%</td>
<td>95.88%</td>
<td>95.47%</td>
<td>95.23%</td>
</tr>
<tr>
<td></td>
<td>CE-CLF</td>
<td>96.52%</td>
<td>96.84%</td>
<td>96.37%</td>
<td>96.34%</td>
<td>96.30%</td>
<td>95.69%</td>
<td>94.92%</td>
<td>94.31%</td>
<td>93.11%</td>
<td>92.00%</td>
</tr>
<tr>
<td></td>
<td>CELP</td>
<td>97.29%</td>
<td>97.52%</td>
<td>97.46%</td>
<td>97.85%</td>
<td>97.99%</td>
<td>97.56%</td>
<td>97.23%</td>
<td>97.15%</td>
<td>96.66%</td>
<td>96.14%</td>
</tr>
<tr>
<td></td>
<td>CENALP</td>
<td>97.31%</td>
<td>97.77%</td>
<td>97.51%</td>
<td>97.24%</td>
<td>97.60%</td>
<td>97.86%</td>
<td>97.34%</td>
<td>96.47%</td>
<td>96.74%</td>
<td>96.16%</td>
</tr>
</tbody>
</table>

Social Analysis - Recommendation

• Cross-site product recommendation:
 • Intuition: if users are aligned, purchase histories can be combined for better recommendation
 • Key idea: leverage cross-site actions to improve user modeling
 • Benefits: may mitigate issues, e.g., cold start, etc.

![Diagram showing cross-site actions and user modeling between Amazon and eBay.](image-url)
JUMA – Approach

• Key idea: use a probabilistic graphical model for joint user modeling over aligned sites

 • User’s site-specific preference P_i^q is transferred from universal preference U_i by transferring model T^q.

 • User conducts actions A_i^q based on P_i^q and site-specific item models $\{\phi_k^q\}$.

JUMA – Approach

• Joint user modeling over aligned sites

 • For item-based site (Douban), use matrix factorization method.

 • For text-based site (Weibo), use Latent Dirichlet Allocation (LDA) to model topic distributions for microblogs.

JUMA – Experimental Results

• Effectiveness of recommendation

<table>
<thead>
<tr>
<th>TARGET</th>
<th>ALGS</th>
<th>0.4</th>
<th>0.5</th>
<th>0.6</th>
<th>0.7</th>
<th>0.8</th>
<th>0.9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Text-Based</td>
<td>LDA</td>
<td>0.6514 ± 0.0017</td>
<td>0.6605 ± 0.0015</td>
<td>0.6694 ± 0.0016</td>
<td>0.6769 ± 0.0018</td>
<td>0.6839 ± 0.0015</td>
<td>0.6928 ± 0.0014</td>
</tr>
<tr>
<td></td>
<td>JUMA</td>
<td>0.6824 ± 0.0014</td>
<td>0.6892 ± 0.0016</td>
<td>0.6976 ± 0.0014</td>
<td>0.7058 ± 0.0017</td>
<td>0.7120 ± 0.0012</td>
<td>0.7194 ± 0.0013</td>
</tr>
<tr>
<td></td>
<td>CTR</td>
<td>0.7021 ± 0.0021</td>
<td>0.7133 ± 0.0017</td>
<td>0.7262 ± 0.0018</td>
<td>0.7352 ± 0.0017</td>
<td>0.7432 ± 0.0016</td>
<td>0.7532 ± 0.0015</td>
</tr>
<tr>
<td></td>
<td>JUMA</td>
<td>0.7338 ± 0.0017</td>
<td>0.7420 ± 0.0015</td>
<td>0.7502 ± 0.0015</td>
<td>0.7592 ± 0.0015</td>
<td>0.7670 ± 0.0015</td>
<td>0.7743 ± 0.0014</td>
</tr>
<tr>
<td>Item-Based</td>
<td>PMF</td>
<td>0.7275 ± 0.0016</td>
<td>0.7323 ± 0.0013</td>
<td>0.7384 ± 0.0015</td>
<td>0.7428 ± 0.0016</td>
<td>0.7485 ± 0.0014</td>
<td>0.7521 ± 0.0013</td>
</tr>
<tr>
<td></td>
<td>SVD++</td>
<td>0.7856 ± 0.0012</td>
<td>0.7929 ± 0.0010</td>
<td>0.7986 ± 0.0016</td>
<td>0.8055 ± 0.0012</td>
<td>0.8089 ± 0.0013</td>
<td>0.8112 ± 0.0011</td>
</tr>
<tr>
<td></td>
<td>TMF</td>
<td>0.7872 ± 0.0015</td>
<td>0.7946 ± 0.0012</td>
<td>0.8001 ± 0.0013</td>
<td>0.8071 ± 0.0019</td>
<td>0.8102 ± 0.0014</td>
<td>0.8132 ± 0.0012</td>
</tr>
<tr>
<td></td>
<td>mmTM</td>
<td>0.6929 ± 0.0019</td>
<td>0.6940 ± 0.0011</td>
<td>0.6943 ± 0.0012</td>
<td>0.6963 ± 0.0015</td>
<td>0.7034 ± 0.0010</td>
<td>0.7064 ± 0.0018</td>
</tr>
<tr>
<td></td>
<td>JUMA</td>
<td>0.8127 ± 0.0017</td>
<td>0.8172 ± 0.0016</td>
<td>0.8219 ± 0.0013</td>
<td>0.8235 ± 0.0011</td>
<td>0.8243 ± 0.0015</td>
<td>0.8259 ± 0.0013</td>
</tr>
</tbody>
</table>

Observation: JUMA performs best for both text-based site Weibo and item-based site Douban.

JUMA – Experimental Results

• Effectiveness of addressing cold-start

Observation: Improvements are higher when dealing with cold users than non-cold users.

Social Analysis – Information Diffusion

• Motivations
 • Users can post messages in multiple platforms;
 • Information thus propagates within-network and across networks.

![Diagram of two social networks, G1 and G2, with nodes A, B, C, D, E connected within each network and between the networks.](image-url)
M&M – Approach

• Goal: multi-aligned multi-relational network influence maximizer

• Key idea: to extend traditional linear threshold to depict diffusion across networks

• Activation probability functions:
 • For intra-network relation i
 \[g_{v,i}^{(1)}(t+1) = \frac{\sum_{u \in \Gamma_{in}(v,i)} \phi^i_{(u,v)} \varphi(u,t)}{\sum_{u \in \Gamma_{in}(v,i)} \phi^i_{(u,v)}} \]
 • For inter-network relation j
 \[h_{v,j}^{(1)}(t+1) = \frac{\sum_{u \in \Gamma_{in}(v,j)} \phi^j_{(u,v)} \varphi(u,t)}{\sum_{u \in \Gamma_{in}(v,j)} \phi^j_{(u,v)}} \]

M&M – Experimental Results

• Effectiveness of influence maximization
• Metric: # of activated users by the seed users

Overview of Part II

Part II: Network Alignment Applications

Social Analysis
- User identity linkage
- Recommendation
 - Friends
 - Products
- Information diffusion

Bioinformatics
- Identify functional orthologs and knowledge transfer
 - Evolutionary relationships
 - Human aging

Knowledge Base
- Knowledge completion

Security
- Modeling adversarial activities
Bioinformatics – Knowledge Transfer

• Motivations:
 • Traditional methods are based on sequence alignment
 • Network data and sequence data provide complementary insights
 • Restricting to sequences may limit knowledge transfer

• Network alignment to identify functional orthologs
 • Benefits: insightful for knowledge of aging and other biological processes.

Knowledge Transfer – Evolutionary Relationships Discovery

• Goal: using network alignment to guide biological knowledge transfer
 • From well-studied species to less well-studied species

• Methods:
 • GRAAL and H-GRAAL: focused on phylogenetic tree inference based on metabolic networks
 • MI-GRAAL:
 • Used these PPI network data to infer evolutionary relationships
 • Considered five herpesviruses based on their network similarities.

Knowledge Transfer – Human Aging Discovery

• Motivations:
 • Susceptibility to diseases increases with age
 • Important to study molecular mechanisms behind aging and aging-associated diseases

• Traditional methods:
 • Transferring knowledge from well-studied species to human between conserved sequence regions

• Network alignment-based methods:
 • MI-GRAAL and IsoRankN: align well known aging-related network parts of one species to known aging-related network parts of other species

Overview of Part II

Part II: Network Alignment Applications

Social Analysis
- User identity linkage
- Recommendation
 - Friends
 - Products
- Information diffusion

Bioinformatics
- Identify functional orthologs and knowledge transfer
 - Evolutionary relationships
 - Human aging

Knowledge Base
- Knowledge completion

Security
- Modeling adversarial activities

Applications
- Identify functional orthologs and knowledge transfer
 - Evolutionary relationships
 - Human aging

Knowledge completion
- Modeling adversarial activities
Knowledge Completion

• Goal: to complete a triple \((h, r, t)\) when one of \(h, r, t\) is missing

• Application scenario by entity alignment:
 • Two sets of triplets (i.e., KGs) for training
 • One set of triplets for testing
 • Two training KGs can be aligned

• Methods:
 • Basically can be any KG alignment methods
 • ITransE/IPTransE for example

ITransE – Experimental Results

- Effectiveness of ITransE for knowledge completion

<table>
<thead>
<tr>
<th>Metric</th>
<th>Mean Rank</th>
<th>Entity Prediction</th>
<th>Hits@10</th>
<th>Relation Prediction</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Raw</td>
<td>Filter</td>
<td>Raw</td>
<td>Filter</td>
</tr>
<tr>
<td>MTransE (LT)</td>
<td>240.8</td>
<td>131.3</td>
<td>36.4</td>
<td>47.3</td>
</tr>
<tr>
<td>MTransE (TB)</td>
<td>851.3</td>
<td>759.7</td>
<td>9.4</td>
<td>10.8</td>
</tr>
<tr>
<td>TransE</td>
<td>246.1</td>
<td>131.6</td>
<td>42.5</td>
<td>54.3</td>
</tr>
<tr>
<td>TransE + Aux</td>
<td>232.8</td>
<td>121.5</td>
<td>43.3</td>
<td>54.9</td>
</tr>
<tr>
<td>ITransE (SA)</td>
<td>209.2</td>
<td>101.0</td>
<td>44.2</td>
<td>55.1</td>
</tr>
<tr>
<td>PTransE</td>
<td>213.0</td>
<td>97.2</td>
<td>50.9</td>
<td>72.1</td>
</tr>
<tr>
<td>PTransE + Aux</td>
<td>206.3</td>
<td>80.4</td>
<td>52.7</td>
<td>80.7</td>
</tr>
<tr>
<td>IPTransE (SA)</td>
<td>197.5</td>
<td>70.6</td>
<td>53.0</td>
<td>80.8</td>
</tr>
</tbody>
</table>

Observation: By successfully leveraging the auxiliary information (i.e., second KG by alignment), ITransE and IPTransE perform better than other baseline methods.

Overview of Part II

Part II: Network Alignment Applications

Social Analysis
- User identity linkage
- Recommendation
 - Friends
 - Products
- Information diffusion

Bioinformatics
- Identify functional orthologs and knowledge transfer
 - Evolutionary relationships
 - Human aging

Knowledge Base
- Knowledge completion

Security
- Modeling adversarial activities
Security – Modeling Adversarial Activities

• Background:
 • Networks are natural structure to model adversarial activities
 • Smuggling
 • Illegal arm dealing
 • Illicit drug production
 • But such activities are often embedded in different domains

MAA – Challenges

• Domain heterogeneity
 • Communication networks
 • Phone call, emails, text, etc.
 • People who call each other may unlikely text often
 • Similarly, email network is structurally distinct from phone call network

• Spatial-temporal challenge
 • Relations contain much spatial-temporal information
 • Who calls whom at which location and at what time

• Very large-scale networks
MAA – Approaches

• Any scalable network alignment methods
 • w/o attribute: only based on connections
 • w/ attribute: view spatial-temporal information as attributes

• Encode temporal information:
 • Count # of connections in certain time window
 • Values at all time windows form node attributes
 • Can be used as attribute-based prior similarity matrix
 • And/or as the attributes in attributed alignment methods (e.g., FINAL)
RoadMap

• Motivations and Background ✔
• Part I: Recent Network Alignment Algorithms ✔
• Part II: Network Alignment Applications ✔
• Part III: Future Research Directions
Big Network Alignment – 4Vs

- 4V characteristics also hold for networks
Big Network Alignment – Volume

• Real-world networks are very large-scale
 • Facebook, Instagram, Twitter have billions of users

• **Challenge:** most of existing methods have at least $O(n^2)$ complexity
 • Some recent consistency-based and embedding-based methods reduce the complexity to linear
 • Complexity may be even larger if we handle multiple networks collectively

• **Question:** how to efficiently do network alignment?

• **Possible directions:** (1) leverage approximation techniques, (2) parallelizable algorithm
Big Network Alignment – Variety

• Real-world networks have rich information
 • Node/edge attributes, text descriptions, temporal information

• Methods exist to handle attribute information
 • But few can handle temporal relation information
 • Who called whom at what time, etc.

• **Question:** how to better incorporate side-information into network alignment?

• **Possible directions:** heterogeneous network alignment, temporal network alignment, etc.
Big Network Alignment – Variety

• Network heterogeneity
 • Networks to be aligned carry different types of information
 • Even same user may behave differently in different networks

• Existing methods explicitly or implicitly build upon consistency assumptions
 • But network heterogeneity may easily violate this assumption

• Questions:
 • How to align different types of networks (e.g., LinkedIn vs. FB)?
 • How to adaptively control consistency assumption?

• Possible directions: Deep learning methods that are highly learnable.
Big Network Alignment – Velocity

• Networks are dynamically changing over time.

• Dynamic network alignment
 • Simple solution: run from scratch at each timestamp
 • Limitation: time consuming; can’t capture dynamics

• Questions:
 • How to efficiently handle alignment over dynamic networks?
 • How to leverage the dynamics (e.g., smoothness)?

• Possible directions:
 • Matrix approximation to avoid unnecessary re-computations.
 • Dynamic network embedding-based alignment methods.
Big Network Alignment – Veracity

• Real-world networks are often noisy and incomplete.
 • Missing connections
 • Missing nodes
 • Missing attribute information

• Existing methods:
 • Jointly solve network alignment and link prediction
 • Benefit: if handled properly, they mutually benefit each other

• Challenge: error propagation
 • If alignment or imputed edges are not correct, the performance will be hurt.
Adversarial Network Alignment

- Improve the alignment effectiveness and robustness
- Noise/adversarial attacks can mislead alignment

 Rewiring attacks
Adversarial Network Alignment

• **Background:**
 • Existing adversarial attacks on network alignment are based on derivative-based importance score
 • But no work exits on adversarial defense

• **Challenge:**
 • Compared to adversarial attack/defense in single network, multiple networks may further complicate the defense process.

• **Possible direction:**
 • Graph neural network-based adversarial learning on network alignment
Integrated Network Alignment

• Explainable network alignment
 • **Background:** there exist explainable network mining tasks
 • Network embedding
 • Graph neural networks
 • Ranking, clustering, etc.
 • **Problem goal:**
 • Explain why two nodes should be aligned or not
 • **Possible directions:**
 • Extend explainable network embedding to embedding-based network alignment
Integrated Network Alignment

• Fair network alignment
 • Background:
 • Fairness has been studied recently in many machine learning and data mining tasks
 • Fairness in graphs has attracted attentions very recently, but for single network
 • Problem goal:
 • To debias the network alignment
 • Possible direction:
 • Extend fairness in single network mining to multiple networks first, then combine the specific objective of network alignment
Summary

• Background and motivation
 • Network alignment aims to find node correspondence across networks
 • A key step to many mining tasks across multiple networks
• Recent network alignment algorithms
 • Pairwise network alignment
 • Collective network alignment
 • Higher-order network alignment
 • Other related tasks
• Network alignment applications
• Future directions
References

References

References

