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ABSTRACT
Dense subgraph detection is a fundamental building block for a va-
riety of applications. Most of the existing methods aim to discover
dense subgraphs within either a single network or a multi-view
network while ignoring the informative node dependencies across
multiple layers of networks in a complex system. To date, it largely
remains a daunting task to detect dense subgraphs on multi-layered
networks. In this paper, we formulate the problem of dense sub-
graph detection on multi-layered networks based on cross-layer
consistency principle. We further propose a novel algorithm Des-
tine based on projected gradient descent with the following ad-
vantages. First, armed with the cross-layer dependencies, Destine
is able to detect significantly more accurate and meaningful dense
subgraphs at each layer. Second, it scales linearly w.r.t. the num-
ber of links in the multi-layered network. Extensive experiments
demonstrate the efficacy of the proposed Destine algorithm in
various cases.

CCS CONCEPTS
• Mathematics of computing → Graph algorithms; • Infor-
mation systems→ Data mining.
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1 INTRODUCTION
Dense subgraph detection which aims to extract tightly connected
components from the underlying graph is a fundamental problem in
many data mining applications, such as community detection [16],
follower-buying service detection [14] and protein complexes de-
tection [25]. Despite of extensive research, many existing works
focus on detecting dense subgraphs on a single network such as
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Figure 1: An illustrative example of the dense subgraph de-
tection problem on a three-layered network. Orange, blue,
and green nodes denote power plants, communication sta-
tions and properties, respectively. The purple rectangle
nodes compose the target dense subgraph in each layer.

densest subgraph detection [7, 13], α-quasi-clique detection [1, 6],
non-negative matrix approximation [5, 10].

To leverage the rich side information (e.g., node/edge attributes)
accompanied with many networks, some existing works [11, 18, 28]
strive to detect dense subgraphs on multi-view networks where
each view of the network is constructed by certain side information.
However, these works naturally assume the same set of nodes across
different views. In the meanwhile, a group of works [4, 23] study the
dense subgraph detection problem in the setup of heterogeneous
networks [19] to consider different types of nodes and edges. Yet,
these methods often require domain expertise to design meta paths.

In many real-world scenarios, networked data can be modelled
through inter-dependent layers with different sets of nodes [15, 26].
For illustration, we present a three-layered network in Figure 1
whose layers represent a power network, a communication network
and a property network, respectively. In this case, nodes within a
single layer are connected based on the geographical proximities,
whereas the links across different layers indicate the cross-layer
dependencies. For example, the cross-layer dependencies between
the top two layers imply that a power plant supplies power to vari-
ous communication stations, and a communication station can be
supported by multiple power sources. The cross-layer dependen-
cies between the bottom two layers show that a communication
station provides services to multiple properties and residents in a
property can choose different communication services. Moreover,
dense subgraphs at different layers tend to depend on each other.
In Figure 1, infrastructures support each other within a local area
due to the supplies and demands for power, population, resources,
etc. More importantly, if there is a dense subgraph on the power
plant network, the subgraphs of the corresponding communication
services and properties in this area are likely to be dense as well.

Unfortunately, existing methods cannot fully handle dense sub-
graph detection on the multi-layered networks due to the following
two key challenges. First (C1. Formulation), it is not clear how to
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jointly encode both within-layer density and cross-layer depen-
dency into the dense subgraph detection problem. Second (C2. Al-
gorithm), the relaxed optimization problem underlying most dense
subgraph detection problems is already non-convex, and intro-
ducing the cross-layer dependency information might make the
problem even harder. In this paper, we propose a novel algorithm
Destine that aims to address these two challenges. The main con-
tributions of the paper are summarized as follows.
Problem Formulation.We formulate dense subgraph detection
on multi-layered networks as an optimization problem, based on
cross-layer consistency principle [15].
Algorithm and Analysis.We propose an efficient algorithm Des-
tine and analyze its convexity and complexity.
Experiments. We conduct comprehensive experiments to demon-
strate the effectiveness and scalability of Destine.

2 PROBLEM DEFINITION
We use bold uppercase letters for matrices (e.g., A), bold lowercase
letters for vectors (e.g., u) where u(x) denotes the x-th element of
vector u, and lowercase letters for scalars (e.g., c). We denote the
transpose of a matrix/vector by the superscript ′ (e.g., A′ as the
transpose of A). We follow the definition of multi-layered network
in [8] and use the following notations to describe a multi-layered
network with д layers. First, we denote a set of adjacency matrices
A = {Ai |i = 1, ...,д} to describe the network structure of each
layer whereAi ∈ {0, 1}ni×ni , and ni is the number of nodes at the i-
th layer. Second, we represent the cross-layer dependency matrices
as C = {Ci , j |i, j = 1, ...,д, i , j} where Ci , j ∈ {0, 1}ni×nj . If node-
x at the i-th layer depends on node-y at the j-th layer, Ci , j (x,y) = 1.
In addition, we use the selection vector si to represent the nodes
in the extracted dense subgraph at the i-th layer. Specifically, if
node-x at the i-th layer is included in the extracted dense subgraph,
si (x) = 1. Otherwise, si (x) = 0. We formally define the dense
subgraph detection problem on multi-layered networks as follows.

Problem 1. Dense Subgraph Detection onMulti-Layered Networks.

Given: a multi-layered network with (1) a set of adjacency matrices

A, (2) a set of cross-layer dependency matrices C.

Find: a set of selection vectors {si |i = 1, ...,д} indicating the detected
dense subgraphs at each layer.

3 METHODS
Objective Function. We formulate Problem 1 by Eq. (1) with two
parts, including within-layer objective function Ld and cross-layer
objective function Lr

min
{si }

д∑
i=1

Ld (si )︸      ︷︷      ︸
within-layer objective

+

д∑
i , j=1

γi , jL
i , j
r (si , sj )︸                  ︷︷                  ︸

cross-layer objective

(1)

s .t . ∀i, si ∈ {0, 1}ni
where i, j are layer indices, si is the node selection vector at the i-

th layer andγi , j is the hyper-parameter that denotes the importance
of the regularization term between the i-th and the j-th layers.
Remarks. Compared with the methods which focus on a single
network (e.g. power grid), our method utilizes the rich cross-layer
information by Lr to obtain better performance. On the other hand,
compared with methods mixing different layers into a heteroge-
neous network, our method explicitly tells apart the differences

between within-layer links and cross-layer links to render the flexi-
bility of integrating existing single network-based methods.

For the within-layer objective, we adopt the edge surplus-based
objective function [21] which equivalently measures the density
as the difference between the number of existing links and that of
missing links in the detected subgraph [27], i.e.,

Ld (si ) = ps
′
i (1i1

′
i − Ii − Ai )si − s′iAi si (2)

where 1i is a vector of length ni whose elements are all set as 1s , Ii
is an identity matrix of size ni × ni and p is the hyper-parameter
denoting the penalty weight of missing links in the detected sub-
graph. When minimizing the above objective w.r.t. the selection
vector si , a small Ld (·) would imply a high density of the subgraph
in terms of edge surplus.

As aforementioned, dense subgraphs at different layers tend
to highly depend on each other. To formulate such information,
we graft the cross-layer consistency principle which was originally
proposed for ranking tasks on network of networks [15]. The core
idea behind cross-layer consistency is that the influence (e.g., the
ranking score) of a pair of nodes from two layers should be similar
if they are strongly dependent on each other. We instantiate cross-
layer consistency, in the context of dense subgraph detection, as a
set of regularization terms between the selection vectors as follows.

L
i , j
r (si , sj ) = | |Ci , j ⊙ (Ci , j − si s

′
j − (1i − si )(1j − sj )

′)| |2F (3)
where ⊙ denotes the Hadamard product and | | · | |F denotes the Frobe-
nius norm. The key idea of Eq. (3) is that for observed cross-layer de-
pendency Ci , j (x,y) = 1, node-x in the i-th layer and node-y in the
j-th layer should be either both selected or not selected simultane-
ously as a member of the dense subgraph in the corresponding layer
(i.e., si (x) = sj (y)). Otherwise, (Ci , j−si s′j−(1i−si )(1j−sj )

′)(x,y) =

1, which leads to the penalty of the objective function. In other
words, if two nodes are inter-dependent with each other, their se-
lection status should be similar as well, which aligns well with the
spirit of the cross-layer consistency principle. In addition, through
the Hadamard product, if two nodes are not linked by any cross-
layer dependency (i.e., Ci , j (x,y) = 0), Eq. (3) sets no constraint on
their selection status.

Due to the binary constraints in Eq. (1), the optimization problem
is an integer programming which is hard to solve. We relax the
binary constraints and have the following optimization formula.

min
{si }

д∑
i=1

Ld (si ) +
д∑

i , j=1
γi , jL

i , j
r (si , sj ), s .t . ∀i, 0i ≤ si ≤ 1i (4)

where the relaxed selection vector si represents the node probabili-
ties to be selected into the dense subgraphs. Next, we analyze the
convexity results of the optimization problem in Eq. (4).

Lemma 3.1. If the largest eigenvalue of Ai satisfies λ1(Ai) >∑
j γi , jnj+p(ni−1)

p+1 , the optimization problem in Eq. (4) is not convex.
Proof. We first explore the Hessian matrices of Eq. (4) w.r.t. to

the selection vector si as ∂2L
∂s2i
=

∂2Ld
∂s2i
+
∑
j γi , j

∂2Li , jr
∂s2i

, where

∂2Ld
∂s2i

= 2p(1i1′i − I) − 2(p + 1)Ai

∂2Li , jr
∂s2i

= diag(Ci , j (8(sj ⊙ sj ) + 21j − 8sj )) (5)

where diag(v) denotes a diagonal matrix corresponding to the vec-
tor v. Clearly, both 1i1′i − I and −Ai are symmetric but not positive



semi-definite, so they have negative eigenvalues. Then we consider
the Hessian matrix in Eq. (5). Since Ci , j is an non-negative matrix,
we study the elements of 8(sj ⊙ sj ) + 21j − 8sj :

(8(sj ⊙ sj ) + 21j − 8sj )(x) = 8(sj (x) − 0.5)2 (6)

Due to the [0, 1] constraint on entries of selection vectors, the
entries of (8(sj ⊙ sj ) + 21j − 8sj ) lie in the range [0, 2], so the
eigenvalues of Eq. (5) are all non-negative.

According to Weyl’s inequality theorem [24], for matrices M,
H, and P ∈ H , where H is the set of n × n Hermitian matrices,
if M = H + P and their eigenvalues are arranged in the order of
λ1(M) ≥ · · · ≥ λn (M), λ1(H) ≥ · · · ≥ λn (H), and λ1(P) ≥ · · · ≥
λn (P), then we have λn (P) ≤ λi (M) − λi (H) ≤ λ1(P), ∀i = 1, . . . ,n.

By defining M = ∂2L
∂s2i

, H1 = 2p(1i1′i − I), H2 = −2(p + 1)Ai , and
Pj = diag(Ci , j (8(sj ⊙ sj ) + 21j − 8sj )), since H1, H2, M ∈ H and
{Pj } ⊂ H , we have the following inequalities.

λni (M) ≤ λ1(H1) + λni (H2) +
∑
j
γi , jλ1(Pj ) (7)

whereni is the number of nodes at the i-th layer. Based on Eq. (6),
we estimate the eigenvalues of Pj as 0 ≤ λni (Pj ) ≤ λ1(Pj ) ≤ 2nj .
Based on the characteristic equation |1i1′i − I − λI| = 0, we have
λ1(H1) = 2p(ni −1) and λ2(H1) = · · · = λni (H1) = −2p. By relaxing
Eq. (7) we have λni (M) ≤ 2p(ni − 1) − 2(p + 1)λ1(Ai ) +

∑
j 2γi , jnj :

Hence, if λ1(Ai) >
∑
j γi , jnj+p(ni−1)

p+1 , the problem is not convex. □
Lemma 3.2. The optimization problem in Eq. (4) is convex w.r.t.

si if
∑
j γi , j min(Ci , j (8(sj ⊙ sj ) + 21j − 8sj )) ≥ 2p + 2(p + 1)λ1(Ai )

where min(·) returns the minimum entry of the vector.

Proof. Omitted for space. □

Lemma 3.1 reveals that the dense subgraph detection problem
on multi-layered networks is inherently difficult and non-convex
in certain regions of the parameter space. The left hand side of the
convex condition in Lemma 3.2 is composed of three sub-conditions:
(1) the connections between the i-th layer and other layers are close
(i.e. dense {Ci , j } matrices); (2) the model pays enough penalty for
the cross-layer objective functions (i.e. large {γi , j }); and (3) the
selection status of the other layers (layers except the i-th layer) is
distinctive (i.e., entries of sj is close to either 0 or 1). Notice that
(8(sj ⊙ sj ) + 21j − 8sj )(x) = 8(sj (x) − 0.5)2. Therefore, the closer
sj (x) is to 0 or 1, the larger this term 8(sj (x) − 0.5)2 will be, and the
optimization problem in Eq. (4) is more likely to be convex.
Optimization Algorithm. We first define A as a block diagonal
matrix A = diag(A1, . . . ,Aд). Then we define C as a block matrix
with block C(i, j) = Ci , j if i , j and C(i, i) is a zero matrix for
i, j = 1, · · · ,д. We include hyper-parametersγi , j into a block matrix
R whose block R(i, j) = Ri , j for i , j and R(i, i) is a zero matrix.
Here, all entries of Ri , j have the values of

√
γi , j . We empirically

set γi , j = (
density of the i-th layer)
density of the j-th layer) )

2. In order to punish the missing
links in the selected subgraph within each layer separately, we
define matrix Â whose diagonal blocks are the same as A but its off-
diagonal blocks are all set as 1. In addition, we define an aggregated
selection vector s = [s′1, . . . , s

′
д]
′. With the above notations, we

overload the functions Ld and Lr and rewrite Eq. (4) as follows.
min
s

Ld (s) + Lr (s) = ps
′(11′ − I − Â)s − s′As (8)

+ | |R ⊙ C ⊙ (C − ss′ − (1 − s)(1 − s)′)| |2F s .t . 0 ≤ s ≤ 1

Data Layer OQC NMF SNMF FRAUDAR Destine

ER
δ=0.1 0.54 1.00 1.00 0.03 1.00
δ=0.2 0.03 1.00 1.00 0.03 1.00
δ=0.6 0.03 0.05 0.06 0.03 0.85

SF
l=20 0.41 1.00 1.00 0.04 1.00
l=40 0.29 0.90 0.87 0.03 1.00
l=60 0.25 0.85 0.85 0.03 1.00

Table 1: F1 scores on the synthetic data.
Data INFRA-5 [8] INFRA-3 [8] Aminer [20] Bio [9, 17, 22]

# of layers 5 3 3 3
# of nodes 349 15,126 125,344 35,631
# of links 379 29,861 214,181 253,827
# of cross-layer links 565 28,023,500 188,844 75,456

Table 2: Statistics of the real-world datasets.
The gradient of Eq. (8) w.r.t. s is ∂L

∂s =
∂Ld
∂s +

∂Lr
∂s . By defining

the notation R2 = R ⊙ R, we have:
∂Ld
∂s
= 2p(11′ − I − Â)s − 2As (9)

∂Lr
∂s
= 8s ⊙ ((R2 ⊙ C)(s ⊙ s)) + 2(R2 ⊙ C)s (10)

+ 2s ⊙ ((R2 ⊙ C)1) − 4(R2 ⊙ C)(s ⊙ s) − 8s ⊙ ((R2 ⊙ C)s)
We update s by projected gradient descent: s ← Π[0,1]|s| [s −

α ∂L
∂s ], where α is the learning rate, | · | represents cardinality, and

ΠY (x) := argminy∈Y | |y − x| |22 . In experiments, we adopt Armijo
line search [2] to adjust the learning rate. Finally, we set threshold
0.5 to return the relaxed selection vector s into a binary vector
and recover it into a set of selection vectors of each layer {si } by
deconcatenating the vector s. In the following lemma, we show that
the time complexity of the proposed Destine algorithm is linear
w.r.t. the number of links of the multi-layered network.

Lemma 3.3. The time complexity of Destine is O(tmax (tsearch +
2)(m + c)) where tsearch is the average number of iterations for

searching Armijo condition; tmax is the maximal number of iterations;

m, c are the total numbers of within-layer links and cross-layer links

of the multi-layered networks respectively.

Proof. Omitted for space. □

4 EXPERIMENTS
Metrics andBaselineMethods.Weevaluate the proposedmethod
in two scenarios. In the scenario where we manually inject cliques
as ground-truths, we adopt F1-score as the metric. In the scenario
without manually-injected cliques, we adopt the size (n), density
(m/

( n
2
)
), and triangle density (l/

( n
3
)
) as the metrics where n,m, l

indicate the number of nodes, edges and triangles respectively. We
compare our method with following baseline methods: OQC [21],
NMF [10], SNMF [5], FRAUDAR [14].
Evaluation on Synthetic Datasets. For the evaluation on syn-
thetic datasets, the following testing protocol is conducted. A set of
cliques are planted into each layer of a multi-layered network, and
we test if the dense subgraph algorithms are able to detect parts
or all of them. Here are the detailed dataset settings. (1) Erdős-
Rényi (ER) graphs. We generate three Erdős-Rényi graphs [12]
as three layers with 1800, 2400, 3000 nodes and link probabilities
δ ∈ {0.1, 0.2, 0.6}, respectively. We divide each of them into 60
subgraphs and match subgraphs from every layer into 60 matched
subgraphs (i.e., view the i-th subgraphs from layer 1, 2, and 3 as a
group of matched subgraphs). The cross-layer dependency links



Data Density Triangle Density Size
OQC NMF SNMF FRAUD. Destine OQC NMF SNMF FRAUD. Destine OQC NMF SNMF FRAUD. Destine

INFRA-3
AP 0.60 0.92 0.98 0.48 0.99 0.28 0.80 0.94 0.18 0.98 82 44 37 102 34
AS 0.51 0.76 0.86 0.55 1.00 0.16 0.46 0.66 0.20 1.00 13 7 7 12 4

Power 0.54 0.80 0.87 0.50 0.97 0.18 0.53 0.66 0.15 0.92 52 23 20 56 15

INFRA-5

P1 0.53 1.00 0.67 0.24 1.00 0.05 1.00 0.00 0.01 1.00 6 3 3 14 3
P2 0.47 0.18 0.67 0.08 0.67 0.05 0.00 0.00 0.00 0.00 6 11 3 32 3
P3 0.50 1.00 0.67 0.12 1.00 0.00 1.00 0.25 0.00 1.00 5 3 4 20 3
P4 0.67 0.20 0.00 0.19 1.00 0.00 0.00 0.00 0.01 1.00 4 10 1 16 3
Net 0.50 0.25 0.33 0.23 0.67 0.00 0.00 0.00 0.00 0.00 4 8 3 12 4

Aminer
Paper 0.71 0.61 0.60 0.71 0.90 0.35 0.23 0.25 0.35 0.70 10 8 6 10 5
Venue 0.53 0.94 0.94 0.40 0.94 0.18 0.73 0.82 0.10 0.82 48 20 18 65 18
Auth 1.00 1.00 0.73 1.00 1.00 1.00 1.00 0.46 1.00 1.00 28 27 40 28 26

Bio
Chem. 1.00 1.00 1.00 0.48 1.00 1.00 1.00 1.00 0.22 1.00 91 91 91 183 91
Gene 0.43 0.29 0.62 0.06 0.97 0.07 0.05 0.27 0.00 0.92 73 55 12 838 9
DZ 0.71 0.89 0.99 0.74 1.00 0.43 0.74 0.99 0.48 1.00 119 89 64 113 59

Table 3: Evaluation on real-world data with metrics: size, density, and triangle density.

generating probability is set as 0.05 if the link connects two nodes
from the matched subgraphs. Otherwise, it is set as 10−3. We ran-
domly set a group of matched subgraphs into cliques of size 30,
40, and 50, respectively. (2) Scale-free (SF) graphs. We generate
three scale-free graphs by [3] with 1800, 2400, 3000 nodes. The pa-
rameter l is set as {20, 40, 60} which is the number of links that are
preferentially attached to existing high degree nodes. We execute
the same settings as Erdős-Rényi graphs to generate cross-layer
links and cliques in each layer.

Table 1 shows that our method consistently achieves the best
performance compared with all baselines under the above two
settings. Specifically, Destine not only performs well (i.e., one of
the best) at the layers that are easier to detect dense subgraphs (e.g.
ER with δ = 0.1 or 0.2), but also significantly outperforms other
baselines at the layer with more within-layer links (e.g. δ = 0.6).
Evaluation on real-world datasets. We use a variety of real-
world datasets to test our method, all of which are publicly available.
Table 2 summarizes the statistics of these datasets. We present the
properties of the detected subgraphs from perspectives of size, den-
sity, and triangle density in Table 3. As we can observe, in most
cases Destine detects subgraphs with the highest density, the highest
triangle density, and the smallest size. To be specific, FRAUDAR con-
sistently extracts subgraphs of larger sizes, but both the densities
and triangle densities are much smaller than the proposed method
Destine and other baseline methods. In contrast, our method ex-
tracts the subgraphs of the highest density measures and of small
sizes comparable to the baseline methods NMF and SNMF. In ad-
dition, our method detects dense subgraphs at all layers while the
baseline methods may fail at some layers. For example, on the
INFRA-5 dataset, the baseline method NMF can extract dense sub-
graphs at layers P1 and P3, but fails at layers P2, P4 and Net. This
validates that the cross-layer consistency indeed helps the dense
subgraph detection on multi-layered networks.
Scalability.We record wall-clock time of our method on a three-
layered synthetic Erdős-Rényi graph with 10,000 nodes at each
layer. We implement it with different within-layer and cross-layer
link density. The results are presented in Figure 2. We observe that
if one of the within-layer and cross-layer link densities is fixed, the
running time is linear w.r.t. the other one. Note that for a multi-
layered network with the fixed number of nodes, the link density is

proportional to the number of links. In other words, the empirical
results complies with the complexity analysis in Lemma 3.3.
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Figure 2: Wall-clock time versus the densities of within-
layer and cross-layer links.

5 CONCLUSION
Dense subgraph detection is a fundamental building block behind
a wealth of applications. However, most of the existing methods
overlook the node dependencies across multiple networks, which
could bear critical clues of detecting more comprehensive dense
subgraphs. In this paper, we study the dense subgraph detection
problem on multi-layered networks. The key idea is to instanti-
ate the cross-layer consistency principle in the context of dense
subgraph detection, by encoding cross-layer node dependencies as
the regularization terms. We further propose an efficient algorithm
named Destine based on projected gradient descent and conduct
extensive experiments in various scenarios to validate both the
effectiveness and efficiency of the proposed method.
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