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Modeling and exploring high-order connectivity patterns, also called network motifs, are essential for un-

derstanding the fundamental structures that control and mediate the behavior of many complex systems.

For example, in social networks, triangles have been proven to play the fundamental role in understanding

social network communities; in online transaction networks, detecting directed looped transactions helps

identify money laundering activities; in personally identifiable information networks, the star-shaped struc-

tures may correspond to a set of synthetic identities. Despite the ubiquity of such high-order structures,

many existing graph clustering methods are either not designed for the high-order connectivity patterns, or

suffer from the prohibitive computational cost when modeling high-order structures in the large-scale net-

works. This article generalizes the challenges in multiple dimensions. First (Model), we introduce the notion

of high-order conductance, and define the high-order diffusion core, which is based on a high-order random

walk induced by the user-specified high-order network structure. Second (Algorithm), we propose a novel

high-order structure-preserving graph clustering framework named HOSGRAP, which partitions the graph

into structure-rich clusters in polylogarithmic time with respect to the number of edges in the graph. Third

(Generalization), we generalize our proposed algorithm to solve the real-world problems on various types

of graphs, such as signed graphs, bipartite graphs, and multi-partite graphs. Experimental results on both

synthetic and real graphs demonstrate the effectiveness and efficiency of the proposed algorithms.
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1 INTRODUCTION

Graph analysis has gained in popularity in the past decade, due to the increasing prominence of
network data in a variety of real-world applications, from social networks to collaboration net-
works, from biological systems to e-commerce systems. Graph clustering algorithms represent an
important family of tools for studying the underlying structure of networks. While most existing
graph clustering algorithms are inherently limited to lower-order connectivity patterns [12, 32,
42], i.e., vertices and edges. They fail to explore the higher-order network structures, which are of
key importance in many high-impact domains. For example, triangles have been proven to play the
fundamental roles in understanding community structures [29]; a multi-hop loop structure may
indicate the existence of money laundering activities in financial networks [19]; a star-shaped
structure may correspond to a set of synthetic identities in personally identifiable information
(PII) networks of bank customers [28].

Despite its importance, a key challenge associated with finding structure-rich subgraphs is the
prohibitive computational cost. Many existing works on high-order graph clustering are either
based on spectral graph theory [7, 48], or estimating the frequency of the high-order connectivity
patterns [2, 11]. These methods may not be scalable to large-scale networks especially when mod-
eling various complex network structures, such as loop-shaped structures, star-shaped structures
and cliques. In this article, we aim to answer the following open questions. First (Q1. Model), it
is not clear that how to model various types of high-order connectivity patterns (e.g., triangles,
loops, and stars) that exist in the given graphs. Some motif-based graph clustering algorithms [7,
34, 47] have been proposed recently, while they are mainly designed for the 3rd-order network
structures (e.g., triangle). Second (Q2. Algorithm), how should we design a fast graph clustering
algorithm that produces structure-preserving graph partitions in the massive real-world networks?
This question has been largely overlooked in the previous studies. Third (Q3. Generalization), how
can we generalize our algorithm to solve real-world problems on various types of graphs such as
signed graphs, bipartite graphs, and multi-partite graphs?

To address above challenges, we propose a novel high-order structure-preserving graph cluster-
ing framework named HOSGRAP, which partitions the graph into structure-rich clusters in poly-
logarithmic time with respect to the number of edges in the graph. In particular, we start with a
generic definition of high-order conductance, and define the high-order diffusion core, which is
based on a high-order random walk induced by user-specified high-order network structure. Then,
inspired by the family of local graph clustering algorithms [4, 5, 45] for efficiently identifying
a low-conductance cut without exploring the entire graph, we generalize the key idea to high-
order network structures and propose our fast high-order graph clustering framework HOSGRAP,
which runs in polylogarithmic time with respect to the number of edges in the graph. It starts with
a seed vertex and iteratively conducts high-order random walks [25, 34] to explore its neighbor-
hood until a subgraph with a small high-order conductance is found. Our algorithm operates on
the tensor representation of graph data which allows the users to specify what kind of network
structures to be preserved in the returned cluster. In addition, we provide analyses regarding the
effectiveness and efficiency of the proposed algorithm. Furthermore, we generalize our proposed
HOSGRAP algorithm to the scenarios when the given networks are signed networks, bipartite net-
works and multi-partite networks. At last, we perform extensive experiments to demonstrate the
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Fig. 1. A synthetic network where vertex 0 is connected with two kinds of network structures: clique and
line. The local clusters found by our approach (within the blue dash-dot line) and the Nibble algorithm [45]
(within the red dotted line) with the same initial vertex, i.e., vertex 0, where algorithm is conducted on the
basis of three-node line (illustrated in Table 2).

effectiveness and the efficiency of the proposed methods. Figure 1 compares the clusters returned
by our method and the Nibble algorithm [45], which shows that our method is better at partitioning
a subgraph with the rich user-specified high-order network structure.

The main contributions of the article are summarized below.

(1) Problem. We formally define the problems of Structure-Preserving Local Graph Cut as well
as Structure-Preserving Graph Clustering, and identify their unique challenges arising from
real applications.

(2) Algorithms and Analysis. We propose a family of algorithms, i.e., HOSPLOC and HOS-
GRAP, to effectively identify structure-rich clusters with a polylogarithmic time complex-
ity. Theoretical analyses show that our proposed algorithms can capture near-optimal
structure-rich clusters under mild conditions.

(3) Generalization and Application. We generalize our proposed HOSPLOC and HOSGRAP
algorithms from binary graphs to signed networks, bipartite networks, and multi-partite
networks in real applications.

(4) Evaluation. Extensive experimental results on synthetic and real networks demonstrate
the performance of the proposed HOSPLOC and HOSGRAP algorithms in terms of effec-
tiveness, scalability, and parameter sensitivity.

The rest of our article is organized as follows. A brief overview of related literature is presented
in Section 2, followed by the introduction of notation and preliminaries in Section 3. In Section 4,
we present the proposed HOSGRAP algorithm as well as the analyses regarding its effectiveness
and efficiency. Then, we introduce its generalizations and applications in Section 5. Experimental
results are presented in Section 6 before we conclude the article in Section 7.

2 RELATED WORK

2.1 Local Spectral Clustering on Graphs

Nowadays, large-scale networks data appear in a broad spectrum of disciplines, from social net-
works [33, 36] to collaborative networks [16, 35], from rare category detection [3, 51–56] to com-
munity detection[13–15, 31, 50], and from data augmentation [9, 58, 59] to crowd-sourcing [60,
61]. Local spectral clustering techniques provide a simple, efficient time alternative to recursively
identify a local sparse cutC with an upper-bounded conductance. In [45], the authors introduce an
almost-linear Laplacian linear solver and a local clustering algorithm, i.e., Nibble, which conducts
cuts that can be combined with balanced partitions. In [4, 5], the authors extend Nibble algorithm
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[45] by using personalized PageRank vector to produce cuts with less running time on undirected
and directed graphs. More recently, [24] proposes a local graph clustering algorithm with the same
guarantee as the Cheeger inequalities, of which time complexity is slightly super linear in the size
of the partition. In [6], the authors introduce randomized local partitioning algorithms that find
sparse cuts by simulating the volume-biased evolving set process. To model the high-order con-
nectivity patterns, [57] proposes a local graph clustering algorithm named HOSPLOC that identi-
fies the structure-rich clusters by exploring the high-order structures in the neighborhood of the
initial vertex in the given graph. Meanwhile, [49] develops a motif-based local graph clustering
algorithm that approximately finds clusters with the minimal motif conductance,a generalization
of the conductance metric for network motifs. Later on, in [43], the authors approach the prob-
lem the problem of discovering user-guided clustering in heterogeneous information networks, by
transcribe the high-order interaction signals (i.e., network motifs) based on a non-negative ten-
sor factorization methods. More recently, researchers aim to generalize HOSPLOC to the dynamic
setting and develop a series of algorithms to compute [20] and track [23] “structure-rich” clusters
in temporal networks. However, to my best of knowledge, this article is the first local clustering
framework that focuses on modeling high-order network structures and partitions the graph into
structure-rich clusters in polylogarithmic time with respect to the number of edges in the graph.

2.2 High-order Markov Chain Models

The oth order Markov chain S describes a stochastic process that satisfies [25]

Pr (St+1 = i1 |St = i2, . . . , St−o+1 = io+1, . . . , S1 = it+1)

= Pr (St+1 = i1 |St = i2, . . . , St−o+1 = io+1)
(1)

where i1, . . . , it+1 denote the set of states associated with different time stamps. Specifically, this
means the future state only depends on the past o states. There are many cases that one would
like to model observed data as a high-order Markov chain in different real-world problems, such
as airport travel flows [41], web browsing behavior [17] and wind turbine design [39]. To solve
these problems, many previous works [1, 18, 39] approximate the limiting probability distribution
of high-order Markov chain as a linear combination of transition probability matrix.

More recently, in [34], the authors introduce a rank-1 approximation of high-order Markov
chain limiting distribution and propose a recursive algorithm to compute it. Later on, [25] intro-
duces a computationally tractable approximation of the high-order PageRank named multi-linear
PageRank, where the underlying stochastic process is a vertex-reinforced random walk. In [8], the
authors introduce a novel stochastic process, i.e., spacey random walk, whose stationary distribu-
tion is given by the tensor eigenvector, and show the convergence properties of these dynamics.
In [7, 47], the authors propose the similar spectral clustering frameworks that allow for model-
ing third-order network structures and conduct partition while preserving such structures on the
given graph. Followed by [7, 48] proposes a tensor spectral co-clustering method by modeling
higher-order data with a novel variant of a higher-order Markov chain, i.e., the super-spacey ran-
dom walk. Compared to the existing high-order Markov chain models, we propose a novel scalable
local clustering algorithm that can identify clusters with a small conductance and also preserve
the user-specified high-order network structures in a polylogarithmic time complexity. Moreover,
we also provide provable theoretical bounds on the effectiveness and efficiency of the proposed
high-order graph clustering framework.

3 PROBLEM DEFINITION

In this section, we formally define the structure-preserving graph cut and the structure-preserving
graph clustering problems. Table 1 lists the main symbols used throughout this article. Given
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Table 1. Symbols

Symbol Definition and description

G = (V ,E) the undirected graph
A the adjacency matrix of G
M the transition probability matrix of G
N the kth-order user-defined structure

T the kth-order adjacency tensor of G
P the kth-order transition tensor of G
P̄ the unfolding matrix of the transition tensor P
q (t ) the t-step high-order random walk distribution vector

r (t ) the truncated vector of q (t )

C the returned cluster
D the returned graph partitions

μ (C ) the edge volume of C
v the initial vertex of local algorithm

Φ(C ) the conductance of C
Φ(C,N ) the kth-order conductance of C regarding N

k the order of N
m the number edges of G
n the number vertices of G
c the number of graph partitions

an undirected graph G = (V ,E), where V consists of n vertices, and E consists of m edges, we
let A ∈ Rn×n denote the adjacency matrix of graph G, D ∈ Rn×n denote the diagonal matrix of
vertex degrees, and d (v ) = D (v,v ) denote the degree of vertex v ∈ V . The transition matrix of a
lazy random walk on graph G is M = (ATD−1 + I )/2, where I ∈ Rn×n is an identity matrix. For
convenience, we define the indicator vector χC ∈ {0, 1}n as follows.

χC (v ) =

{
1 v ∈ C
0 Otherwise

.

In particular, the initial distribution of a random walk starting from vertexv could be denoted as χv .
The volume of a subset C ⊆ V is defined as the summation of vertex degrees in C , i.e., μ (C ) =∑

v ∈C d (v ). We let C̄ be the complementary set of C , i.e., C̄ = {v ∈ C̄ |v ∈ V ,v � C}. The conduc-
tance [10] of subset C ⊆ V is therefore defined as

Φ(C ) =
|E (C, C̄ ) |

min(μ (C ), μ (C̄ ))
(2)

where E (C, C̄ ) = {(u,v ) |u ∈ C,v ∈ C̄}, and |E (C, C̄ ) | denotes the number of edges in E (C, C̄ ). Be-
sides, we represent the elements in a matrix or a tensor using the convention similar to Matlab,
e.g., M (i, j ) is the element at the ith row and jth column of the matrix M , and M (i, :) is the ith row
of M , and so on.

We let N denote the the kth-order user-defined structure. Table 2 summarizes the examples
of network structures N of different orders and the corresponding Markov chain. Notice that the
order of the network structure is different from the order of the Markov chain (or random walk). For
example, the edges in E are considered as the 2nd-order network structures, and they correspond
to the 1st-order Markov Chain (random walk) due to the matrix representation of E. We use k to
denote the order of the network structureN . As what will be explained next, thek th-order network
structures correspond to the (k − 1)th-order Markov chain (random walk).
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Table 2. Network Structures N and Markov Chains

N Illustration Order of N Markov Chain Random Walks
Graph Clustering

Algorithms

Vertex 1st-order 0th-order N/A N/A

Edge 2nd-order 1st-order 1st-order 1st-order

3-node Line

3rd-order 2nd-order 2nd-order 2nd-order

Triangle

k-node Star k th-order (k − 1)th-order (k − 1)th-order (k − 1)th-order

With the above notion, our problems can be formally defined as follows:

Problem 1. Structure-Preserving Local Graph Cut

Input: (i) an undirected graphG = (V ,E), (ii) a user-defined network structure N , (iii) the initial
vertex v .

Output: a local cluster C that largely preserves the user-defined structures N .

Problem 2. Structure-Preserving Graph Clustering

Input: (i) an undirected graphG = (V ,E), (ii) a user-defined network structure N , (iii) the num-
ber of clusters.

Output: a graph partition D that largely preserves the user-defined structures N in the returned
clusters.

4 PROPOSED ALGORITHMS

In the previous section, we introduced the notations and problem definitions. Now, we generalize
the idea of truncated local clustering to produce clusters that preserve the user-specified high-order
network structures. We start by reviewing the basics of the Nibble algorithm for local clustering
on graphs [45], which pave the way for discussion of the proposed structure-preserving graph
clustering algorithm. Then, we introduce the adjacency tensor and the associated transition ten-
sor based on the user-specified high-order network structures, followed by the discussion on the
stationary distribution of high-order random walk. After that, we introduce the definitions of high-
order conductance and high-order diffusion core. Finally, we present our proposed HOSPLOC and
HOSGRAP algorithms with theoretical analyses in terms of the effectiveness and efficiency.

4.1 Background: Truncated Local Graph Clustering Algorithm

Given an undirected graphG and a parameter ϕ > 0, to find a clusterC fromG such that Φ(C ) ≤ ϕ
or to determine no such C exists is an NP-complete problem [44]. Nibble algorithm [45] is one
of the earliest attempts to partition a graph with a bounded conductance in polylogarithmic time.
Starting from a given vertex, Nibble provably finds a local cluster in time (O (2bloд6m)/ϕ4)), where
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b is a constant which controls the lower bound of the output volume. This is proportional to the
size of the output cluster. The key idea behind Nibble is to conduct truncated random walks by
using the following truncation operator

[q]ϵ (u) =

{
q(u) if q(u) ≥ d (u)ϵ
0 Otherwise

(3)

where q ∈ Rn is the distribution vector over all the vertices in the graph, and ϵ is the truncation
threshold that can be computed as follows [45]

ϵ =
1

(1800 · (l + 2)tlast 2b )
(4)

where l can be computed as l = �loд2 (μ (V )/2)�, and tlast can be computed as

tlast = (l + 1)

⌈
2

ϕ2
ln

(
c1 (l + 2)

√
μ (V )/2

)⌉
(5)

Then, Nibble applies the vector-based partition method [37, 38, 45] that sorts the probable nodes
based on the ratio of function Ix to produce a low conductance cut. To introduce function Ix math-
ematically, we first define S j (q) to be the set of top j vertices u that maximizes q(u)/d (u). That is
S j (q) = {π (1), . . . ,π (j )}, where π is the permutation that follows

q(π (i ))

d (π (i ))
≥ q(π (i + 1))

d (π (i + 1))
.

In addition, we let λj (q) =
∑

u ∈Sj (q ) d (u) denote the volume of the set S j (q). Finally, the function
Ix is defined as follows

Ix (q, λj (q)) =
q(π (j ))

d (π (j ))
. (6)

4.2 Adjacency Tensor and Transition Tensor

For an undirected graphG, the corresponding adjacency matrix A could be considered as a matrix
representation of the existing edges onG. If each vertex in graphG corresponds to a distinct state,
we can interpret the transition matrix M as the transition matrix of the 1st-order Markov chain.
Specifically, the transition probability between vertex i and vertex j is given by M (i, j ) = Pr (St+1 =

i |St = j ). Moreover, if M is stochastic, irreducible and aperiodic [40], we can compute a positive
and unique vector x̄ = Mx̄ , where x̄ ∈ Rn is the limiting or stationary probability distribution of
the random walk.

However, in many real applications, we may want to explore and capture more complex and
high-order network structures. To model the user-specified network structure N , we introduce the
definition of adjacency tensor T and the transition tensor P to represent the high-order random
walk induced by the high-order network structures N .

Definition 1 (Adjacency Tensor). Given a graph G = (V ,E), the k th-order network structure N
on G could be represented in a k-dimensional adjacency tensorT as follows

T (i1, i2, . . . , ik ) =

{
1 {i1, i2, . . . , ik } ⊆ V and form N .
0 Otherwise.

(7)

Definition 2 (Transition Tensor). Given a graph G = (V ,E) and the adjacency tensor T for the
k th-order network structure N , the corresponding transition tensor P could be computed as

P (i1, i2, . . . , ik ) =
T (i1, i2, . . . , ik )∑n

i1=1T (i1, i2, . . . , ik )
(8)
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By the above definition, we have
∑

i1
P (i1, . . . , ik ) = 1. Therefore, if each vertex in G is a dis-

tinguishable state, we can interpret the k th-order transition tensor P as a (k − 1)th-order Markov
chain (random walk), i.e.,

Pr (St+1 = i1 |St = i2, . . . , St−k+2 = ik ) = P (i1, . . . , ik ).

Intuitively, if i1 � i ′1, and they both form N together with i2, . . . , ik , then the probabilities of the
next state being i1 and being i ′1 are the same given St = i2, . . . , St−k+2 = ik . Notice that the transi-
tion matrix M of a lazy random walk defined in Subsection 4.1 can be considered as a special case
of Definition 2 with the 2nd-order network structure N , if we allow self-loops.

4.3 Stationary Distribution

For the k th-order network structure N and the corresponding (k − 1)th-order random walk with
transition tensor P , if the stationary distributionX exists, whereX is a (k − 1)-dimensional tensor,
then it satisfies [25]

X (i1, i2, . . . , ik−1) =
∑
ik

P (i1, i2, . . . , ik )X (i2, . . . , ik ). (9)

Where X (i1, . . . , ik−1) denotes the probability of being at states i1, . . . , ik−1 in consecutive time
steps upon convergence of the random walk, and

∑
i1, ...,ik−1

X (i1, . . . , ik−1) = 1.

However, for this system, storing the stationary distribution requires O (n(k−1) ) space complex-
ity. For the sake of computational scalability, in high-order random walks, a commonly held as-
sumption is ‘rank-one approximation’ [7, 34], i.e.,

X (i2, . . . , ik ) = q(i2) . . .q(ik ) (10)

where q ∈ Rn×1
+ with

∑
i q(i ) = 1. Then, we have∑

i2, ...,ik

P (i1, . . . , ik )q(i2) . . .q(ik ) = q(i1).

In this way, the space complexity of the stationary distribution of high-order random walk is re-
duced toO (n). Although q is an approximation of the true stationary distribution of the high-order
random walk, [34] theoretically demonstrates the convergence and effectiveness of the nonnega-
tive vector q if P satisfies certain properties.

Following [7, 34], in this article, we also adopt “rank-one approximation” and assume the sta-
tionary distribution of the high-order random walk satisfies Equation (10). To further simplify the
notation, we let P̄ denote the (k − 2)-mode unfolding matrix of the k-dimensional transition tensor
P . Thus, the (k − 1)th-order random walk satisfies:

q = P̄ (q ⊗ . . . ⊗ q) (11)

where ⊗ denotes the Kronecker product symbol. For example, for the third-order network structure
N (e.g., triangle), the transition tensor P ∈ Rn×n×n can be constructed based on Definition 2. Then,
the 1-mode unfolding matrix P̄ of P can be written as follows

P̄ = [P (:, :, 1), P (:, :, 2), . . . , P (:, :,n)]

where P̄ ∈ Rn×n2
. In this way, the associated second-order random walk with respect to the triangle

network structure satisfies

q = P̄ (q ⊗ q).
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4.4 High-Order Conductance

Given a high-order network structure N , it is usually the case that the user would like to find a
local cluster C on the graph G such that: (1) C contains a rich set of network structures N; and
(2) by partitioning all the vertices into C and C̄ , we do not break many such network structures.
For example, in financial fraud detection, directed loops may refer to money laundering activities.
In this case, we would like to ensure the partition preserves rich directed loops inside the cluster
and breaks such structure as less as possible. It is easy to see that the traditional definition of the
conductance Φ(C ) introduced in Section 4.1 does not serve this purpose. Therefore, we introduce
the following generalized definition of conductance to preserve user-defined high-order network
structure N .

Definition 3 (k th-order Conductance). For any cluster C in graph G and the k th-order network
structure N , the k th-order conductance Φ(C,N ) is defined as

Φ(C,N ) =
cut (C,N )

min{μ (C,N ), μ (C̄,N )}
(12)

where cut (C,N ) denotes the number of network structures broken due to the partition of G into
C and C̄ , i.e.,

cut (C,N ) =
∑

i1, ...,ik ∈V
T (i1, . . . , ik ) −

∑
i1i2, ...,ik ∈C

T (i1, . . . , ik )

−
∑

i1, ...,ik ∈C̄
T (i1, . . . , ik )

(13)

and μ (C,N ) (μ (C̄,N )) denotes the total number of network structures N incident to the vertices
within C (C̄), i.e.,

μ (C,N ) =
∑

i1∈C ;i2, ...,ik ∈V
T (i1, i2, . . . , ik )

μ (C̄,N ) =
∑

i1∈C̄ ;i2, ...,ik ∈V
T (i1, i2, . . . , ik ). (14)

Claim 1. Definition 3 provides a generic definition of network conductance with respect to any
network structure, and it subsumes existing measures of network conductance. In particular.

—When N represents edges, Φ(C,N ) is twice the traditional conductance Φ(C ) introduced in
Section 4.1.

—When N represents triangles, Φ(C,N ) is the same as the “high-order conductance” ϕ3 intro-
duced in [7].

4.5 High-Order Diffusion Core

Similar to the Nibble algorithm, we are given a seed vertex v , and our goal is to find a cluster C
containing or near v without looking at the whole graph. The main advantage of our proposed
work is that, given the user-specified high-order network structure N , we are able to produce a local
cluster that preserves such structure within the clusterC and does not break many such structures
by partitioning the graph into C and C̄ .

To this end, we perform high-order random walk with transition tensor P defined in Definition 2,

starting from the seed vertex v . Let q (t ) denote the distribution vector over all the vertices after
the t th iteration of the high-order random walk. Ideally, a seed vertex chosen within a cluster C
with low conductance should lead to the discovery of this cluster. However, as pointed out in
[45], for the 2nd-order network structure and the associated 1st-order random walk, if the vertices

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 2, Article 18. Publication date: December 2020.



18:10 D. Zhou et al.

within the cluster are more strongly attached to vertices outside the cluster than inside it, they
may not be good candidates for the seed, as the random walk will have a relatively high chance of
escaping the cluster after a few iterations. Therefore, they propose the definition of the diffusion
core to characterize the subset of vertices within the cluster, such that the random walks starting
from such vertices stay inside the cluster for a long time. Here, we generalize the definition of a
diffusion core to high-order network structures as follows.

Definition 4 (k th-Order ξ -Diffusion Core). For any cluster C , we define Ck,ξ ∈ C to be the k th-
order ξ -diffusion core of C , such that

χT
C̄k,ξ q

(t ) ≤ ξ
cut (C,N )

μ (C,N )
(15)

where q (t ) denotes the diffusion distribution of t-step high-order random walks, and ξ is a positive
constant that controls the compactness of the diffusion core.

Note that the left-hand side of Equation (15), χT
C̄k,ξ q

(t ) , represents the probability that a high-

order random walk terminates outside the clusterC after t steps, which is also called the escaping
probability of the cluster C . On the right-hand side of Equation (15), the numerator could be con-
sidered as the total number of the k th-order random walk paths to escape cluster C , while the
denominator could be regarded as the total number of the k th-order random walk paths starting

from C . It is easy to see that χT
C̄k,ξ q

(t ) is positively correlated with
cut (C,N )

μ (C,N ) . Since, for a given C ,

χT
C̄k,ξ q

(t ) is a computable constant, we consider Equation (15) as the compactness constraint for

the k th-order ξ -diffusion core Ck,ξ ∈ C .

Proposition 1. For any cluster C and the k th-Order ξ -diffusion core Ck,ξ ∈ C , we have

χT
C̄k,ξ q

(t ) ≤ ξΦ(C,N ). (16)

Proof. Given a clusterC ∈ V and a k th-order network structure N , the corresponding k th-order
conductance can be computed as

Φ(C,N ) =
cut (C,N )

min{μ (C,N ), μ (C̄,N )}
.

Obviously, we can divide the proof into the following two cases. Case 1 : when μ (C,N ) ≥ μ (C̄,N ),

Φ(C,N ) = cut (C,N )
μ (C̄,N )

≥ cut (C,N )
μ (C,N ) .

Case 2 : when μ (C,N ) < μ (C̄,N ), Φ(C,N ) = cut (C,N )
μ (C,N ) .

Thus, we have Φ(C,N ) ≥ cut (C,N )
μ (C,N ) . Meanwhile, by Definition 4, it turns out that

χT
C̄k,ξ q

(t ) ≤ ξ
cut (C,N )

μ (C,N )
≤ ξΦ(C,N ). �

4.6 High-Order Structure-Preserving Graph Cut

Basically, the proposed HOSPLOC could be decomposed into three main steps: (1) approximately
compute the distribution of high-order random walk starting at any vertex from which the walk

does not mix rapidly; (2) truncate all small entries in q (t ) to 0, thus we can limit the computation
to the neighborhood of the seed; and (3) apply the vector-based graph partition method [37, 38,
45] to search for a structure-rich cut with a small conductance.

Now, we are ready to present our proposed HOSPLOC algorithm. The given inputs are the tran-
sition tensor P , the transition matrix M , the seed vertex v , the conductance upper-bound ϕ, the
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maximum iteration number tmax, and the constants b, c1, ξ . Note that constant b controls the vol-
ume lower bound of the returned setC , i.e., 2b ≤ μ (C ), and c1 is a constant which guarantees that
the elements in C have a large probability of staying within C . Steps 1–4 are the initialization
process. Step 1 constructs unfolding matrix P̄ of the transition tensor P . Steps 2–4 compute the

truncation constant ϵ and the truncated initial distributions vectors r (m) ,m = 1, . . . ,k − 1. The it-
erative process between Step 5 and Step 16 aims to identify the proper high-order local cluster C:
Step 6 calculates the updated distribution over all the vertices in current iteration; Step 7 calculates

the truncated local distribution r (t ) ; the iterative process stops when it finds a proper cluster which
satisfies the three constraints in Steps 9–11, where condition (a) guarantees that the conductance
of C is upper-bounded by ϕ, condition (b) ensures that the volume of C is lower-bounded by 2b ,
and condition (c ) enforces that elements in C have a large probability mass.

ALGORITHM 1: High-Order Structure-Preserved Local Cut (HOSPLOC)

Input:

(1) k th-order transition tensor P and transition matrix M ,
(2) Initial vertex v ,
(3) Conductance upper bound ϕ,
(4) Maximum iteration number tmax,
(5) Parameters b, c1, ξ .

Output:

Local cluster C;
1: Construct the unfolding matrix P̄ of the transition tensor P .
2: Compute constant ϵ based on Equation (4).

3: Set initial distribution vectors q (t ) = M (t−1) χv , where t = 1, . . . ,k − 1.

4: Compute truncated initial local distribution vectors r (t ) = [q (t )]ϵ , t = 1, . . . ,k − 1.
5: for t = k : tmax do

6: Update distribution vector q (t ) = P̄ (r (t−1) ⊗ . . . ⊗ r (t−k+1) ).
7: Update truncated distribution vectors r (t ) = [q (t )]ϵ .
8: if there exists a j such that:
9: (a)Φ(S j (q (t ) )) <= ϕ,

10: (b)2b <= λj (q (t ) ),

11: (c)Ix (q (t ), 2b ) >=
ξ

c1 (l+2)2b . then

12: return C = S j (q (t ) ) and quit.
13: else

14: Return C = ∅.
15: end if

16: end for

Next, we analyze the proposed HOSPLOC algorithm in terms of effectiveness and efficiency.
Regarding the effectiveness, we will show that for any clusterC , if the seed vertex comes from the
k th-order ξ -diffusion core, i.e., v ∈ Ck,ξ , then the non-empty set C ′ returned by HOSPLOC has a
large overlap with C . To be specific, we have the following theorem.

Theorem 1 (Effectiveness of HOSPLOC). Let C be a cluster on graph G such that Φ(C,N ) ≤
1

c2 (l+2) , where 2c1 ≤ c2. If HOSPLOC runs with starting vertex v ∈ Ck,ξ and returns a non-empty set

C ′, then we have μ (C ′ ∩C ) ≥ 2b−1.
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Proof. Let q (t ) , t ≤ tmax, be the distribution of t − step high-order random walk when the set

C ′ = S j (q (t ) ) is obtained. Then, based on Proposition 1, we have the following inequality

χT
C̄
q (t ) ≤ χT

C̄k,ξ q
(t ) ≤ ξΦ(C,N ) ≤ ξ

c2 (l + 2)
. (17)

In Step 11 of Algorithm 2, condition (c ) guarantees that

Ix (u) =
q (t ) (u)

d (u)
≥ ξ

c1 (l + 2)2b
(18)

where u ∈ S j (q (t ) ). Since d (u) ≥ 0 and c1 (l + 2)2b ≥ 0, we can infer the following inequality from
Equation (18)

d (u) ≤ 1

ξ
c1 (l + 2)2bq (t ) (u). (19)

Let j ′ be the smallest integer such that λj′ (q
(t ) ) ≥ 2b . In Step 10 of Algorithm 1, condition (b)

guarantees that j ′ ≤ j. By Equations (17) and (19), we have

μ (S j′ (q
(t ) ) ∩ C̄ )

=
∑

u ∈Sj′ (q (t ) )∩C̄

d (u)

≤
∑

u ∈Sj′ (q (t ) )∩C̄

1

ξ
c1 (l + 2)2bq (t ) (u)

≤ 1

ξ
c1 (l + 2)2b (χT

C̄
q (t ) )

≤ ξc1 (l + 2)2b

ξc2 (l + 2)
≤ 2b−1.

(20)

Due to 2b ≤ λj′ (q
(t ) ), it turns out that μ (S j′ (q

(t ) ) ∩C ) ≥ 2b−1. Since j ≥ j ′, we have the final con-
clusion

μ (S j (q (t ) ) ∩C ) ≥ μ (S j′ (q
(t ) ) ∩C ) ≥ 2b−1. (21)

�

Regarding the efficiency of HOSPLOC, we provide the following lemma to show the polyloga-
rithmic time complexity of HOSPLOC with respect to the number of edges in the graph.

Lemma 1 (Efficiency of HOSPLOC). Given graphG and the k th-order network structure N , k ≥
3, the time complexity of HOSPLOC is bounded by O (tmax

2bk

ϕ2k loд
3km).

Proof. To bound the running time of HOSPLOC, we first show that each iteration in Algorithm 1
takes time O ( 1

ϵk ). Instead of conducting dense vector multiplication or Kronecker product, we

track the nonzeros in both matrixes and vectors. Here, we let V t denote the set of vertices such
that {u ∈ V (t ) |r (t ) (u) > 0}, and V (t̂ ) be the set with the maximum number of nonzero elements in
{V (t ) |1 ≤ t ≤ tmax }. In Step 6, the Kronecker product chain r (t−1) ⊗ . . . ⊗ r (t−k+1) can be performed
in time proportion to

|V (t−1) | . . . |V (t−k+1) | ≤ |V (t̂ ) | (k−1) ≤ μ (V (t̂ ) ) (k−1) .
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Also, [45] shows that μ (V (t ) ) ≤ 1/ϵ for all t . Therefore, to compute r (t−1) ⊗ . . . ⊗ r (t−k+1) takes

O (μ (V (t̂ ) ) (k−1) ) ≤ O (1/ϵ (k−1) ) time. After that, the matrix vector product can be computed in

O
(
μ (V (t ),N )

)
≤ O

(
μ (V (t̂ ),N )

)
≤ O

(
μ (V (t̂ ) )

)k
≤ O

(
1

ϵk

)
.

The truncation in Step 7 can be computed in timeO ( |V (t̂ ) |). Steps 8–15 require sorting the vertices

in |V t | according to r (t ) , which takes time O ( |V (t̂ ) | log |V (t̂ ) |). In sum, the time complexity of each
iteration in HOSPLOC is O ( 1

ϵk ).
Since the algorithm runs at most tmax iterations, the overall time complexity of HOSPLOC is

O ( tmax

ϵk ). By Equation (4), we can expand O ( tmax

ϵk ) as follows

O
( tmax

ϵk

)
= O ��tmax

(
2bloд3μ (V )

ϕ2

)k��
= O

(
tmax

2bk

ϕ2k
loд3km

)
. �

Remark 1: The major computation overhead of Algorithm 1 comes from Step 6. Note that

O (tmax
2bk

ϕ2k loд
3km) is a strict upper-bound for considering extreme cases. While, due to the power

law distribution in real networks, we may usually have |V (t ) | ≤
√
μ (V (t̂ ) ). Then, the time com-

plexity of Algorithm 1 can be reduced to O (tmax/ϵ
k/2) = O (tmax (2b/ϕ2)k/2loд3k/2m).

Remark 2: Suppose the maximum iteration number of Nibble and HOSPLOC are both upper-

bounded by tmax , then the time complexity of Nibble is O (
tmax 2b loд4m

ϕ2 ). Considering the k = 3

case, the time complexity of HOSPLOC is O (tmax
23b

ϕ6 loд
9m). Without considering the impact from

the other constants, we can see that similar to Nibble, HOSPLOC also runs in polylogarithmic time
complexity with respect to the number of edges in the graph.

4.7 High-Order Structure-Preserving Graph Clustering

We now present the high-order structure-preserving graph clustering algorithm named HOSGRAP
in Algorithm 2, that perform structure-preserving graph partitioning by routinely calling HOS-
PLOC. The inputs of Algorithm 2 are mostly the same as Algorithm 1, the only differences are that
Algorithms 2 requires cluster number c and the vertices distribution ψV for sampling initial ver-
tices in order to call HOSPLOC. Step 1 is the initialization step, while Steps 2–8 are the main loop
of HOSPLOC that aims to partition the graph into c structure-rich subgraphs. Specifically, Steps 3

and 4 construct the subgraph G (j ) and its corresponding transition tensor P (j) by indexing G and

P ; Step 5 samples the initial vertex from G (j ) according toψV , while Step 6 computes the value of
b that controls the minimum volume of the returned cluster; in the end, Step 7 calls HOSPLOC to
conduct graph cut by using the above computed parameters. If the returned cluster C in Step 6 is
nonempty, we will update the partitionD = D ∪ {C, C̄}, otherwise, we will return the current graph
partition D. The algorithm stops when the graph is partitioned into c structure-rich subgraphs.

As HOSGRAP calls HOSPLOC via a subroutine, we analyze the complexity of Algorithm 2 based
on the results from Lemma 1. Lemma 2 shows that the expected running time of HOSGRAP algo-

rithm is bounded by O (L
tmax loд3k+1m

ϕ2k ), where L denotes the iteration number of Algorithm 2.

Lemma 2 (Efficiency of HOSGRAP). Given graph G and the k th-order network structure N ,

k ≥ 3, the time complexity of HOSGRAP is bounded by O (L
tmax loд3k+1m

ϕ2k ).
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Fig. 2. Social status theory example: (Left) A directed “+” edge from node v1 to node v2 shows that v2 has a
higher status than v1. (Right) A directed “-” edge from node v1 to node v2 shows vice versa.

Proof. Based on Lemma 1, the expected running time of inner loop (Steps 3–7) in Algorithm 2
can be bounded by

O ���
�log m (j ) �∑

i=1

2−ik

1 − 2−�log m (j ) �k
tmax

2ik

ϕ2k
loд3km(j )�	�

≤ O ���
�log m �∑

i=1

1

1 − 2−�log m �k

tmaxloд3k m

ϕ2k

�	�
≤ O

(
tmax

loд3k+1m

ϕ2k

)
(23)

wherem(j ) is the number of edges in the subgraph G (j ) .
Suppose the overall iterations of HOSGRAP is L, then the expected running time of HOSGRAP

is upper bounded by O (L
tmax loд3k+1m

ϕ2k ). Note that the iteration number L is naturally larger than

the number of clusters c . When L = c, it indicates the fact that HOSGRAP successfully identifies a
cluster in each iteration before stopping the algorithm. �

5 GENERALIZATIONS AND APPLICATIONS

In this section, we introduce several generalizations and applications of our proposed HOSPLOC
algorithm on signed networks, bipartite networks, and multi-partite networks.

5.1 Community Detection on Signed Networks

First, we extend our proposed framework, i.e., HOSPLOC, to solve problems on signed graphs.
In many real applications, the high-order network structures of interest to us are presented with
signed edges. For instance, Figure 2 presents an unstable three-node network structure and a stable
three-node network structure based on social status theorem [27]. In community detection [22],
we may want to ensure (1) the stable configurations to be rich within communities and sparse
in-between different communities; (2) the unstable configurations to be sparse within commu-
nities and rich in-between different communities. For this purpose, the adjacency tensor can be
constructed as follows

T (i1, i2, . . . , ik ) =
⎧⎪⎪⎨⎪⎪⎩

1 {i1, i2, . . . , ik } is stable structure
0 {i1, i2, . . . , ik } is unstable structure
α Otherwise

(24)

where {i1, i2, . . . , ik } ∈ V and constant 0 < α < 1. By this way, we can ensure: (1) the returned clus-
ter of HOSPLOC contains rich stable structures; (2) the partition would most likely break unstable
structures.
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Fig. 3. The illustration of user-advertisement interaction. (a) An example of two users both participate in
two advertisement campaigns. (b) An four-node loop induced from (a).

ALGORITHM 2: High-Order Structure-Preserved Graph Partitioning (HOSGRAP)

Input:

(1) k th-order transition tensor P and transition matrix M ,
(2) Vertex distributionψV ,
(3) Conductance upper bound ϕ,
(4) Maximum iteration number tmax,
(5) Parameters c1, ξ ,
(6) Partition number c

Output:

Graph Partitioning D = D1 ∪ . . .D j ;

1: Set G (1) = G, P (1) = P , M (1) = M and j = 1.
2: while j < c do

3: Construct the subgraph G (j ) = (V (j ),E (j ) ) regarding the largest component in D.

4: Compute the transition tensor P (j) and the transition matrix M (j ) of subgraph G (j ) .

5: Randomly sample a initial vertex in G (j ) according toψV .
6: Choose a b in 1, . . . , �logm� according to

Pr (b = i ) =
2−ki

1 − 2−k �log m � .

7: PartitioningG (j ) intoC and C̄ via HOSPLOC algorithm. IfC is nonempty, let D = D ∪ {C, C̄},
and j = j + 1; otherwise, return the current graph partitioning D.

8: end while

5.2 User Behavior Modeling on Bipartite Networks

We now turn our attention to the problem of user behavior modeling on the advertisement net-
works. Given an advertisement network B = (VB ,EB ), the bipartite graph B contains two types
of nodes, i.e., user nodes VU and advertiser campaign nodes VA, i.e., VB = {VU ,VA}. The edges EB

only exist between user nodes VU and advertiser campaign nodes VA. Intuitively, the customers
with similar activities on the advertisement network should be included in the same cluster. For
this reason, we choose four-node loop as the base network structure for HOSPLOC algorithm.
Specifically, suppose both user nodes u1, u2 have user-campaign interactions with the advertiser
campaign nodes a1 and a2, then we have a four-node loop, which is shown in Figure 3. In this prob-
lem, we consider the advertisement network as an undirected graph, and the adjacency tensor can
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be constructed as follows

T (i1, i2, i3, i4) =

{
1 {i1, i2, i3, i4} form a 4-nodes loop
0 Otherwise

(25)

where {i1, i2, i3, i4} ∈ VB . Starting from an initial vertex, the returned clusterCB by HOSPLOC would
represent a local user-campaign community, which consists of both similar users and the users’
favorite advertiser campaigns.

5.3 Synthetic ID Detection on Multi-partite Networks

Here, we explain how to detect synthetic IDs on the PII network by using our proposed HOSPLOC
algorithm. The PII network is a typical multi-partite network, where each partite set of nodes rep-
resents a particular type of PII, such as users’ names, users’ accounts, and email addresses, and
the edges only exist between different partite sets of nodes. In synthetic ID fraud [28], criminals
often use modified identity attributes, such as phone number, home address and email address, to
combine with real users’ information and create synthetic IDs to do malicious activities. Hence,
for the synthetic IDs, there is a high possibility that their PIIs would be shared by multiple iden-
tities, which may compose rich star-shaped structures. In this case, the adjacency tensor can be
constructed as

T (i1, i2, . . . , ik ) =

{
1 {i1, i2, . . . , ik } form a k-node star
0 Otherwise

(26)

where {i1, i2, . . . , ik } ∈ VB . Note that the returned partition may consist of various types of nodes.
However, it is viable to trace back from the extracted PII nodes and discover the set of synthetic
identities.

6 EXPERIMENTAL RESULTS

In this section, we present the experimental evaluations. The experiments are designed to answer
the following questions: In particular, we aim to answer the following questions:

—Effectiveness: How effective is the proposed HOSPLOC algorithm for conducting a local cut
with preserving high-order network structures, and how effective is the proposed HOSGRAP
algorithm for performing structure-preserving graph clustering?

—Scalability: How fast and scalable are the proposed HOSPLOC and HOSGRAP algorithms?
—Parameter Sensitivity: How robust are the proposed algorithms with changing parameters?
—Case Study: What’s the performance of the proposed algorithms when we are solving prob-

lems on bipartite graph and multi-partite graph.

6.1 Experiment Setup

Datasets: We evaluate our proposed algorithm on both synthetic and real-world network graphs.
The statistics of all real datasets are summarized in Table 2.

—Collaboration Network: We use two collaboration networks from Aminer.1 In network (Au-
thor), the nodes are authors, and an edge only exists when two authors have a co-authored
paper. In network (Paper), the nodes are distinct papers, and an edge only exists when one
paper cites another paper.

— Infrastructure Network: In network (Airline),2 the nodes represent 2,833 airports, and the
edges represent the US flights in a 1-month interval. Network (Oregon) [30] is a network

1https://aminer.org/data.
2http://www.levmuchnik.net/Content/Networks/NetworkData.html.
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Table 3. Statistics of the Networks

Category Network Type Nodes Edges
Citation Author Undirected 61,843 402,074

Paper Undirected 62,602 10,904
Infrastructure Airline Undirected 2,833 15,204

Oregon Undirected 7,352 15,665
Power Undirected 4,941 13,188

Social Epinion Undirected 75,879 508,837
Review Rating Bipartite 8,724 90,962

Financial PII Multi-partite 375 519

of routers in Autonomous Systems inferred from Oregon route-views between March 31,
2001 and May 26, 2001. Network (Power)3 contains the information of the power grid of the
western states of USA. A node represents a generator, a transformator or a substation, and
an edge represents a power supply line.

—Social Network: Network (Epinion) [30] is a who-trust-whom online social network. Each
node represents a user, and one edge exits if and only if when one user trusts another user.

—Review Network: Network (Rating) [26] is a bipartite graph, where one side of nodes repre-
sent 643 users, and another side of nodes represent 7,483 movies. Edges refer to the positive
ratings, i.e., rating score larger than 2.5, on MovieLens website. Note that this network is a
subgraph from the original one, due to storing the 4th-order transition tensor of the original
graph, i.e., 100s K vertices and millions edges, requires too much memory.

—Financial Network: Network (PII) is a multi-partite graph, which consists of five types of
vertices, i.e., 112 bank accounts, 71 names, 80 emails, 35 addresses, and 77 phone numbers.
Edges only exist between account vertices and PII vertices.

Comparison Methods: In our experiments, we compare our methods with both local and
global graph clustering methods. Specifically, the comparison algorithm includes three local algo-
rithms, i.e., (1) Nibble [45], (2) NPR [4], and (3) LS-OQC [46], and two global clustering algorithms,
i.e., (1) NMF [21] and (2) TSC [7]. Among these five baseline algorithms, TSC algorithm is designed
based on high-order Markov chain, which can model high-order network structures, i.e., triangle.

Repeatability: Most of the datasets are publicly available. The code of the proposed algorithms
is released on the authors’ website. For all the results reported, we set c1 = 140, ξ = 1, and vertex
distribution ψV to be a uniform distribution. tlast can be directly computed from the given graph
via Equation (5). The experiments are mainly performed on a Windows machine with four 3.5 GHz
Intel Cores and 256 GB RAM.

6.2 Effectiveness Analysis

The effectiveness comparison results conducted on six real undirected graphs by the following
three evaluation metrics. Among them, (1) Conductance [10] in Equation (2) measures the general
quality of a cut on graph, which quantitatively indicates the compactness of a cut; (2) The 3rd-
Order Conductance could be computed based on Equation (12) by treating triangle as the network
structure N , which estimates how well the network structure N is preserved in the returned cut
from being broken by the partitions; and (3) Triangle Density [10] is defined as τ (C ) = 3t (C )/w (C ),
where t (G ) is the number of triangles inC andw (C ) is the number of wedges inC . Conventionally,

3http://konect.uni-koblenz.de/networks/opsahl-powergrid.
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Fig. 4. The average conductance of the returned graph cut. Lower is better.

Fig. 5. The average 3rd-order conductance of the returned graph cut. Lower is better.

Fig. 6. The average triangle density of the returned graph cut. Higher is better.

we have t (C ) = 0 if there is no wedge in the givenC . Here we use Triangle Density to measure the
ratio of how rich the triangle is included in the returned cluster C .

A. Quantitative Evaluations for Problem 1. The comparison results for the structure-
preserving local graph cut problem are shown from Figure 4 to Figure 6. Moreover, to evaluate the
convergence of local algorithms, we randomly select 30 vertices from one cluster on each testing
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Fig. 7. The average conductance over the partitioned subgraphs. Lower is better.

Fig. 8. The average 3rd-order conductance over the partitioned subgraphs. Lower is better.

graph and run all the local algorithms multiple times by treating each of these nodes as an initial
vertex. In particular, the heights of bars indicate the average value of evaluation metrics, and the
error bars (only for local algorithms) represent the standard deviation of evaluation metrics in
multiple runs. We have the following observations: (1) In general, local algorithms perform better
than the global algorithm, and our HOSPLOC algorithm consistently outperforms the others on
all the evaluation metrics. For example, compared to the best competitor, i.e., TSC, on network
(Airline), HOSPLOC algorithm is 97% smaller on conductance, 12.2% smaller on the 3rd-order con-
ductance, 80% larger on triangle density. (2) High-order Markov chain models, i.e., HOSPLOC and
TSC, could better preserve triangles in the returned cluster. For example, on network (Epinion),
both HOSPLOC and TSC return a cluster with much higher triangle density and much lower the
3rd-order conductance. (3) HOSPLOC algorithm shows a more robust convergence property than
the other local clustering algorithm by comparing the size of error bars. For example, among the
three local algorithms, only HOSPLOC algorithm returns the identical cluster on network (Paper)
with different initial vertexes.

B. Quantitative Evaluations for Problem 2. The comparison results for the Structure-
Preserving Graph Partition problem are presented in Figures 7–9. For conducting HOSGRAP, we
manually set the vertex distributionψV following the degree distribution, and the partition num-
ber c = 5. In Figures 7–9, the height of the bars indicate the averaged value of the metrics of the
partitioned subgraphs, and the error bars represent the standard deviation of evaluation metrics
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Fig. 9. The average triangle density over the partitioned subgraphs. Higher is better.

in 30-times runs. In general, we observe that our proposed HOSGRAP algorithm outperforms the
baseline methods in all the six datasets across all the metrics.

6.3 Scalability Analysis

In this subsection, we study the scalability of our proposed framework. We let triangle as the user-
defined network structure and the partition number c = 3. Since our method is built on higher
order of random walk than Nibble, we consider Nibble as the running time lower bound of HOS-
PLOC algorithm. Notice that all the results in Figure 10 are the average values of multiple runs by
using 30 different initial vertexes on the same graph. In Figure 10(a), we show the running time of
HOSGRAP, HOSPLOC, and Nibble on a series of synthetic graphs with increasing number of ver-
tices but fixed edge density of 0.5%. We observe that although HOSGRAP and HOSPLOC require
more time than Nibble in each run, the running time of HOSGRAP and HOSPLOC increases polylog-
arithmically with the size of the graph |V |, which demonstrate our scalability analysis in Lemma
1 and Lemma 2. In Figure 10(b), we show the running time of HOSPLOC and Nibble versus the
lower bound of output volume on the synthetic graph with 5,000 vertices and 0.5% edge density,
by keeping the other parameters fixed. Note that HOSGRAP is not included in Figure 10(b), since
the the lower bound of output volume 2b is not an input variable of HOSGRAP algorithm. We can
see that the running time of HOSPLOC is polynomial with respect to 2b , which is consistent with
our time complexity analysis.

6.4 Parameter Analysis

In this subsection, we analyze the parameter sensitivity of our proposed HOSPLOC algorithm with
triangle as the specified network structure, by comparing with Nibble algorithm on the synthetic
graph with 5,000 vertices and 0.5% edge density. Here, we mainly focused on HOSPLOC algorithm,
as HOSGRAP could be considered as multiple runs of HOSPLOC algorithm with different initial-
ization. In the experiments, we evaluate the conductance and the 3rd-order conductance of the
returned cut with different values of input parameter ϕ. In Figure 11, we have the following ob-
servations: (1) HOSPLOC returns the optimal cut even with a very loose conductance upper bound
ϕ. In Figure 11(a), we can see the output conductance of HOSPLOC converges to the minimum
value when ϕ = 0.4, while the output conductance of Nibble converges to its minimum value un-
til ϕ = 0.1. (2) Both the conductance and the 3rd-order conductance of HOSPLOCś cut are always
smaller than Nibble’s cut with different ϕ.
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(a) e number of vertices

(b) e lower bound of C’s volume

Fig. 10. Scalability Analysis w.r.t. the number of nodes n and the the lower bound volume of the returned

clusters 2b .

6.5 Case Study

In this subsection, we will consider more complex network structures and perform our proposed
HOSPLOC algorithm on bipartite and multi-partite networks.

Case Study on Bipartite Graph. We conduct a case study on the network (Rating) to find a
local community consisting of similar taste users and their favorite movies. In this case study, we
construct the transition tensor on the basis of four-node loop based on Equation (25). Figure 12(a)
presents a miniature of the cluster identified by our proposed HOSPLOC algorithm regarding four-
node loop that illustrated in Figure 12(b). For example, in Figure 12, the highlighted red loop shows
that both of the third and the fourth users like the first and the fourth movies, while the highlighted
blue loop represents that both of the third and the fifth users like the fifth and the last movies. It
seems the fifth user does not like the first movie due to no direct connection between them. While
the interesting part is the first, the fifth and the last movies are from the same series, i.e., Karate
Kid I, II, III. Moreover, the fourth movie, i.e., Back to School, and Karate Kid I, II, III, are all from
the category of comedy. It turns out that our HOSPLOC algorithm returns a community of comedy
movies and their fans.

Case Study on Multi-partite Graph. Here, we conduct a case study on the network (PII)
to identify suspicious systemic IDs. In this case, we treat five-node star as the underlying
network structure, and the corresponding transition tensor could be generated by Equation (26).
Figure 13(a) presents a subgraph of the returned cut by our proposed HOSPLOC algorithm
regarding five-node star that illustrated in Figure 13(b). We can see that many PIIs are highly
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(a) Conductance

(b) e 3rd -order conductance

Fig. 11. Parameter analysis w.r.t. conductance upper-bound ϕ. Lower is better.

Fig. 12. Case study on bipartite network Rating. (a) An example of detected community by HOSPLOC on
Rating. (b) An example of four-node loop on Rating.
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Fig. 13. Case study on multi-partite network PII. (a) An example of detected community by HOSPLOC on
PII. (b) An example of five-node star on PII.

shared by different accounts. For example, the account connected with blue lines shares the
home address and email address with the account connected with purple lines, while the account
connected with red lines shares the holder’s name and phone number with the account connected
with blue lines. Comparing with the regular dense subgraph detection methods, our method can
better identify the IDs who share their PIIs with others, by exploring the nature structure of PII,
i.e., five-node star, on the given graph.

7 CONCLUSION

In this article, we propose a structure-preserving graph cut algorithm, i.e., HOSPLOC, that gives
users the flexibility to model any high-order network structures and returns a small high-order
conductance cluster which largely preserves the user-specified network structures. Based on HOS-
PLOC, we further develop a partitioning algorithm named HOSGRAP that largely preserves the
user-defined structures in the returned clusters. Besides, we analyze its performance in terms of
the optimality of the obtained cluster and the polylogarithmic time complexity on massive graphs.
Furthermore, we generalize the proposed algorithms to solve real problems on signed networks,
bipartite networks and multi-partite networks, by exploring the useful high-order network con-
nectivity patterns, such as loops and stars. Finally, the extensive empirical evaluations on a diverse
set of networks demonstrate the effectiveness and scalability of our proposed HOSPLOC and HOS-
GRAP algorithms.
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