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ABSTRACT
Network alignment plays an important role in a variety of applica-
tions. Many traditional methods explicitly or implicitly assume the
alignment consistency which might suffer from over-smoothness,
whereas some recent embedding based methods could somewhat
embrace the alignment disparity by sampling negative alignment
pairs. However, under different or even competing designs of nega-
tive sampling distributions, some methods advocate positive cor-
relation which could result in false negative samples incorrectly
violating the alignment consistency, whereas others champion nega-
tive correlation or uniform distribution to sample nodes which may
contribute little to learning meaningful embeddings. In this paper,
we demystify the intrinsic relationships behind various network
alignment methods and between these competing design principles
of sampling. Specifically, in terms of model design, we theoretically
reveal the close connections between a special graph convolutional
network model and the traditional consistency based alignment
method. For model training, we quantify the risk of embedding
learning for network alignment with respect to the sampling dis-
tributions. Based on these, we propose NeXtAlign which strikes
a balance between alignment consistency and disparity. We con-
duct extensive experiments that demonstrate the proposed method
achieves significant improvements over the state-of-the-arts.
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1 INTRODUCTION
In the age of big data, multiple networks emerge in many influ-
ential domains, such as social networks of different online social
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platforms and protein-protein interaction (PPI) networks of differ-
ent species. Network alignment, which aims to uncover the node
correspondences across networks (e.g., dashed lines in Figure 1
(a)), plays a crucial role in distilling values from multiple networks.
Specifically, with the node correspondences, multiple networks
can be integrated into a world-view network which may exhibit
the patterns that are invisible if mining networks separately. For
example, aligning proteins across PPI networks of different species
facilitates to transfer knowledge from well-studied species to less-
studied species and explore the evolutionary relationships [7]. In
addition, by integrating multiple transaction networks, the complex
fraud behaviors (e.g., money laundering) that are covert in each
individual network can be brought to light.

Despite extensive research on network alignment, many tradi-
tional methods explicitly or implicitly assume the alignment con-

sistency [21, 31, 32]. That is, the alignments of neighboring node
pairs tend to be consistent with each other. For example, FINAL
[32] explicitly formulates the alignment consistency as minimizing
the differences between the alignment of two nodes and those of
their corresponding neighbors. Alternatively, the objective can be
interpreted as directly generating positive alignment pairs by all

neighboring node pairs (e.g., (𝑐, 𝑓 ) from the anchor link (𝑏,𝑦)) and
then minimizing the differences among them. However, optimizing
this alignment consistency might result in the over-smoothness
issue of the alignments within a local neighborhood and fail to
distinguish the correct alignments from misleading alignments.

On the other hand, embedding based methods, which infer node
alignments by node embeddings, can to some extent incorporate
the alignment disparity and ameliorate the over-smoothness issue
by bringing in the negative alignment pairs. For example, some
alignment methods (such as [3, 13]) sample negative alignment
pairs by a degree-based sampling distribution and learn node em-
beddings that classify the sampled alignment pairs into the nega-
tive class. Others apply a uniform distribution to randomly sample
negative alignment pairs used in the ranking loss [22, 26]. With
negative sampling, the learned node embeddings can potentially
make the alignments within the local neighborhood more separa-
ble (i.e., alignment disparity). More recently, negative sampling for
single network embedding has been riveted and various sampling
strategies are proposed under different or even competing design
principles. For example, [28] advocates a positive correlation be-
tween negative and positive sampling distributions. That is, nodes
with similar embeddings are more likely to be sampled such that
hard negative samples are encouraged. Others exclusively favor a
negative correlation to better preserve local proximity [1, 14].

Despite various negative sampling strategies, it still remains
opaque how negative sampling should be designed to benefit net-
work alignment. In other words, a more fundamental question is
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what makes a ‘good’ negative pair in the context of network align-

ment? Intuitively, good negative samples should distinguish the
anchor links and the close node pairs that may mislead the align-
ment, while not violating the overall alignment consistency. In
addition, these negative samples should inform the model to learn
meaningful embeddings for network alignment. However, the afore-
mentioned negative sampling strategies have their own limitations.
To be specific, owing to its root in single network embedding, posi-
tive correlation based sampling [28] may lead to the false negative
alignment pairs (e.g., (𝑐, 𝑓 ) as the negative alignment pair of an-
chor link (𝑏,𝑦) in Figure 1 (a)) which results in incorrect alignments
violating the alignment consistency. On the other side, using the
pre-defined distributions [13, 22] and those that are negatively cor-
related to the positive sampling distribution [1, 14] may sample
distant or dissimilar node pairs (e.g., (𝑒, ℎ)) that may not contribute
much to learning meaningful node embeddings.

In this paper, we strive to demystify the intrinsic relationships
behind different competing designs for network alignment (i.e.,
alignment consistency vs. disparity, negative correlation vs. posi-
tive or neutral correlation), so that we can strike a good trade-off
between them. We address this from both the model architecture
and model training perspectives. First (model design), we theoret-
ically prove that the alignments inferred by graph convolutional
networks resemble the semi-supervised variant of the consistency
based alignment method FINAL [32]. This inspires a specific graph
convolutional network model that can preserve alignment consis-
tency. Second (model training), we provide a lemma that implies the
mean square error between the inner products of node embeddings
learned by expected loss and empirical loss can be quantified by
different sampling distributions. To reduce the error while mak-
ing the aforementioned competing designs compatible with each
other, we design a novel alignment scoring function which paves
the way to the proposed sampling strategies. Armed with these
components, we propose a novel semi-supervised method that ac-
commodates both alignment consistency and alignment disparity.
The main contributions of the paper are summarized as below.

• Problem Definition. To our best knowledge, we are the
first to study the trade-off between the consistency and dis-
parity in network alignment.

• Method and Analysis. We theoretically reveal the close
connections between graph convolutional networks and con-
sistency based alignment method and the intrinsic relation-
ships behind the competing principles of sampling designs.
Based on them, we propose a new semi-supervised network
alignment method NeXtAlign.

• Empirical Evaluations. Extensive experiments validate
significant improvements compared to the state-of-the-arts.

The rest of the paper is organized as follows. Section 2 defines
the semi-supervised network alignment problem and introduces the
preliminaries. Section 3 presents the proposed network alignment
method. Section 4 shows the experimental results. Related works
and conclusion are presented in Section 5 and Section 6.

2 PROBLEM DEFINITION
Table 1 summarizes the main notations used in the paper. We use
bold uppercase letters formatrices (e.g., L), bold lowercase letters for
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Figure 1: The world-view network.

vectors (e.g., a), lowercase letters (e.g., 𝛼) for scalars and uppercase
calligraphic letters (e.g., L) for sets. We denote the transpose by a
superscript prime (e.g., L′ as the transpose of L).

2.1 Semi-Supervised Network Alignment
We denote the input networks by G1 = {V1,A1,X1} and G2 =

{V2,A2,X2} where V1,V2 represent the node sets, A1,A2 repre-
sent the adjacency matrices and X1,X2 represent the input node
attributes of G1,G2 respectively. And we denote 𝑛1 = |V1 |, 𝑛2 =

|V2 | as the number of nodes in two networks and the input at-
tribute matrices are of sizes X1 ∈ R𝑑0×𝑛1 ,X2 ∈ R𝑑0×𝑛2 . In ad-
dition, anchor links are defined as the node pairs that are one-
to-one mapped a priori. For example, given a set of anchor links
L = {(𝑎, 𝑥) |𝑎 ∈ V1, 𝑥 ∈ V2}, it indicates that node-𝑎 in G1 is
aligned with node-𝑥 in G2 a priori. In this way, node-𝑎 is called as
an anchor node in G1 and node-𝑥 is an anchor node in G2. We also
define L1 = {𝑎 |∃𝑥 ∈ V2, 𝑠 .𝑡 ., (𝑎, 𝑥) ∈ L} as the set of anchor nodes
in G1 and similarly L2 for G2. Accordingly, the sets of non-anchor
nodes are denoted by L̄1 = V1 − L1 and L̄2 = V2 − L2. As for
indexing nodes, we use 𝑏,𝑦 as the general indices to index all the
nodes in V1 and V2. In addition, we use 𝑎, 𝑥 to specifically index
the anchor nodes in L1,L2, and use𝑢, 𝑣 to index non-anchor nodes.

Given above notation definitions, our goal is to learn node em-
beddings and infer the alignment matrix S ∈ R𝑛1×𝑛2 . Formally, we
define the semi-supervised network alignment as follows.

Table 1: Symbols and Notations
Symbols Definition
G1, G2 input networks
L the set of anchor links across G1,G2

L1,L2 the sets of corresponding anchor nodes in G1 and G2
L̄1, L̄2 the sets of non-anchor nodes in G1 and G2
𝑎, 𝑥 indices of anchor nodes in G1 and G2
𝑢, 𝑣 indices of non-anchor nodes in G1 and G2
𝑏,𝑦 indices of all nodes in G1 and G2
a, x column embedding vectors of node-𝑎 and node-𝑥
[·∥·] vertical concatenation of two column vectors
⊙ Hadamard product

Problem 1. Semi-Supervised Network Alignment.

Given: (1) undirected networks G1 = {V1,A1,X1} and G2 =

{V2,A2,X2}, and (2) a set of anchor links L.

Output: the alignment matrix Swhere S(𝑎, 𝑥) indicates how likely

node-𝑎 and node-𝑥 are aligned.



Note that for networks without node attributes, we use the one-
hot encoding of a node as its input node attributes [20]. Given the
fact that the nodes of an anchor link essentially represent the same
entity, we can integrate the input networks G1,G2 into a world-
view network G by merging two anchor nodes into a single node.
As a result, the world-view network G has (1) non-anchor nodes in
G1,G2 and unique anchor nodes as the nodes of G, and (2) all edges
of G1,G2 co-exist in G (shown in Figure 1 (b)). By learning node
embeddings in this world-view network G, we can naturally share
the unique embedding across two corresponding anchor nodes, i.e.,
a = x, ∀(𝑎, 𝑥) ∈ L. In the paper, we use a and x interchangeably.

2.2 Preliminaries
In many existing network alignment methods, a widely used as-
sumption is the alignment consistency assumption that neighboring
node pairs tend to have consistent alignments [2, 21, 32]. The exist-
ing method FINAL [32] formulates this assumption as

min
S

∑
𝑎,𝑏,𝑥,𝑦

[
S(𝑎, 𝑥)√

|N1 (𝑎) | |N2 (𝑥) |
− S(𝑏, 𝑦)√

|N1 (𝑏) | |N2 (𝑦) |

]2

A1 (𝑎,𝑏)A2 (𝑥, 𝑦)

(1)
where N1 (𝑎),N2 (𝑥) denote the neighbors of node-𝑎 in G1 and
node-𝑥 in G2. Besides, we have A1 = A′

1,A2 = A′
2. Here, Eq. (1)

encourages a small difference between S(𝑎, 𝑥) and S(𝑏,𝑦) if node-𝑏
and node-𝑦 are close neighbors of node-𝑎 and node-𝑥 . In the mean-
while, we can interpret Eq. (1) from another angle. That is, given an
anchor link (𝑎, 𝑥) with a large S(𝑎, 𝑥), it encourages S(𝑏,𝑦) to be
consistent with S(𝑎, 𝑥) (i.e., large S(𝑏,𝑦) as well), which means the
objective function in Eq. (1) naturally considers all the neighboring
node pairs as the positive alignment pairs of (𝑎, 𝑥). To solve Eq. (1),
a fixed-point update in the 𝑡-th iteration is computed as

S𝑡 = Ã1S𝑡−1Ã′
2 (2)

where Ã1, Ã2 are the symmetric normalization of A1,A2.
In the semi-supervised setting, the supervision (i.e., anchor links)

can be used as a regularization upon Eq. (2), which leads to

S𝑡 = 𝛼Ã1S𝑡−1Ã′
2 + (1 − 𝛼)L (3)

where 𝛼 controls the importance of the alignment consistency.
L(𝑎, :) = 0 and L(:, 𝑥) = 0 except L(𝑎, 𝑥) = 1 if and only if (𝑎, 𝑥) ∈ L.

3 METHOD
3.1 Model Overview and Key Ideas
The core challenge that we aim to address is to design and train
the model to strike a balance between the alignment consistency
and disparity. To design the model that learns node embeddings
while encouraging alignment consistency, we first prove that the
alignments inferred by the node embeddings by a specific message
passing without parameters (Eq. (5)) resemble the semi-supervised
FINAL [32]. The key idea of the proof is to conduct a rank-|L|
decomposition on matrix L used in Eq. (3) and use the decomposed
matrices as the input node embeddings. Intuitively, by viewing the
anchor nodes as the landmarks in the |L|-dimensional Euclidean
space, this message passing can be interpreted as to determine the
relative positions for all nodes w.r.t. the anchor nodes. Next, based
on its capability of capturing alignment consistency, we propose
the parameterized counterpart of this message passing in Eq. (6).

We name it as the RelGCN layer which is then used to calibrate the
relative positions of nodes calculated by Eq. (5). The final node em-
beddings are obtained by applying a linear layer on these position
vectors. The overall architecture is shown in Figure 2.

In terms of model training, the key idea of achieving the trade-off
is by different sampling distributions. The intuitions behind it are
as follows. Given an anchor link (𝑎, 𝑥) ∈ L, if (𝑏,𝑦) is sampled as
the positive alignment pair, it encourages the consistency between
node pairs (𝑏,𝑦) and (𝑎, 𝑥). In contrast, if (𝑏,𝑦) is sampled as the
negative alignment pair, the alignment disparity is favored between
them. Besides, to preserve the local proximity within the same
network, we also sample positive context pairs and negative context
pairs. To design these sampling distributions, we first quantify the
mean square error between the inner products of node embeddings
learned by minimizing the expected loss and empirical loss. Based
on this, to make the inner products of the high-probability node
pairs to be estimated more accurately while satisfying different and
even competing design principles, we compose a novel alignment
scoring function that reflects multiple aspects of node embeddings.

3.2 Model Design
We first connect the fixed-point update of FINAL (i.e., Eq. (2)) to the
vanilla GCN [11]. Suppose the alignment of nodes 𝑎, 𝑥 is computed
by S(𝑎, 𝑥) = a′x, then we have the following update

(a𝑡 )′x𝑡 = S𝑡 (𝑎, 𝑥) = Ã1 (𝑎, :)S𝑡−1Ã2 (:, 𝑥)

=
∑

𝑏∈N1 (𝑎)

∑
𝑦∈N2 (𝑥)

(b𝑡−1)′y𝑡−1√
|N1 (𝑎) | |N1 (𝑏) | |N2 (𝑥) | |N2 (𝑦) |

(4)

=
∑

𝑏∈N1 (𝑎)

(b𝑡−1)′√
|N1 (𝑎) | |N1 (𝑏) |

∑
𝑦∈N2 (𝑥)

y𝑡−1√
|N2 (𝑥) | |N2 (𝑦) |

where b𝑡−1 represents the node embedding of node-𝑏 in the (𝑡 − 1)-
th iteration/layer. As we can see, the 𝑡-th iteration of computing the
alignment S𝑡 (𝑎, 𝑥) is equivalent to updating the node embeddings
by applying the vanilla GCN without parameters

a𝑡 =
∑

𝑏∈N1 (𝑎)

b𝑡−1√
|N1 (𝑎) | |N1 (𝑏) |

, x𝑡 =
∑

𝑦∈N2 (𝑥)

y𝑡−1√
|N2 (𝑥) | |N2 (𝑦) |

followed by the inner product. Note that different from the vanilla
GCN, we consider the neighborhood without self-loops. In addition,
due to the over-smoothness issue of GCNs [12], the node alignments
inferred by the node embeddings above could also suffer from over-
smoothness, which might hamper the performance.

In the semi-supervised setting where anchor links are available,
we design the following message passing without parameters

u𝑡 =
√
𝛼

∑
𝑏∈N1 (𝑢)

b𝑡−1√
|N1 (𝑢) | |N1 (𝑏) |

+
√

1 − 𝛼u𝑡−1

v𝑡 =
√
𝛼

∑
𝑦∈N2 (𝑣)

y𝑡−1√
|N2 (𝑣) | |N2 (𝑦) |

+
√

1 − 𝛼v𝑡−1

a𝑡 = x𝑡 =
√
𝛼

∑
𝑏∈N1 (𝑎)

b𝑡−1√
|N1 (𝑎) | |N1 (𝑏) |

+
√

1 − 𝛼x𝑡−1

+
√
𝛼

∑
𝑦∈N2 (𝑥)

y𝑡−1√
|N2 (𝑥) | |N2 (𝑦) |

(5)



where node-𝑢, node-𝑣 are non-anchor nodes and 𝑎, 𝑥 are anchor
nodes. As shown in Lemma 1, the alignments inferred by embed-
dings in Eq. (5) resemble the semi-supervised FINAL (i.e., Eq. (3)).

Lemma 1. Suppose the initial non-anchor node embeddings are

u0 = v0 = 0 and those of the anchor nodes are a0 = x0 = e𝑖 ∈ R |L |

where (𝑎, 𝑥) is the 𝑖-th anchor link, e𝑖 (𝑖) = 1 and e𝑖 ( 𝑗) = 0, ∀𝑗 ≠
𝑖 . Then by updating Eq. (5) once, the alignments computations are

equivalent to Eq. (3) up to additional intra-network proximity and

possible scaling terms.

Proof. Given |L| = 𝐿 anchor links, we can conduct a rank-𝐿
decomposition upon Lwithout errors into L = L′1L2. Since L(𝑎, 𝑥) =
1 if (𝑎, 𝑥) ∈ L, we have L1 (:, 𝑎) = a0 = e𝑖 and L2 (:, 𝑥) = x0 = e𝑖 .
For non-anchor nodes, we have L1 (:, 𝑢) = u0 = 0, L2 (:, 𝑣) = v0 = 0.
After initializing embeddings as L1, L2, the alignments are computed
by the inner products among the updated embeddings with Eq. (5).

S(𝑢, 𝑣) = 𝛼
∑

𝑏∈N1 (𝑢)

(b0)′√
|N1 (𝑢) | |N1 (𝑏) |

∑
𝑦∈N2 (𝑣)

y0√
|N2 (𝑣) | |N2 (𝑦) |

S(𝑢, 𝑥) = 𝛼
∑

𝑏∈N1 (𝑢)

(b0)′√
|N1 (𝑢) | |N1 (𝑏) |

∑
𝑦∈N2 (𝑥)

y0√
|N2 (𝑥) | |N2 (𝑦) |

+ 𝛼
∑

𝑏∈N1 (𝑢)

(b0)′√
|N1 (𝑢) | |N1 (𝑏) |

∑
𝑐∈N1 (𝑎)

c0√
|N1 (𝑎) | |N1 (𝑐) |

+
√
𝛼 (1 − 𝛼)

∑
𝑏∈N1 (𝑢)

(b0)′√
|N1 (𝑢) | |N1 (𝑏) |

x0

S(𝑎, 𝑥) = 2𝛼
∑

𝑏∈N1 (𝑎)

(b0)′√
|N1 (𝑎) | |N1 (𝑏) |

∑
𝑦∈N2 (𝑥)

y0√
|N2 (𝑥) | |N2 (𝑦) |

+ 𝛼

|N1 (𝑎) |
∑

𝑏∈{N1 (𝑎)∩L1 }

1
|N1 (𝑏) |

+ 𝛼

|N2 (𝑥) |
∑

𝑦∈{N2 (𝑥)∩L2 }

1
|N2 (𝑥) |

+ (1 − 𝛼)

Note S(𝑎, 𝑣) is omitted as it is similar to S(𝑢, 𝑥).We denote S1 (𝑢, 𝑎) =
[∑𝑏∈N1 (𝑢)

b0√
|N1 (𝑢) | |N1 (𝑏) |

] ′[∑𝑐∈N1 (𝑎)
c0√

|N1 (𝑎) | |N1 (𝑐) |
], S2 (𝑥, 𝑣) =

[∑𝑦∈N2 (𝑥)
y0

√
|N2 (𝑦) | |N2 (𝑥) |

] ′[∑𝑧∈N2 (𝑣)
z0√

|N2 (𝑧) | |N1 (𝑣) |
] whichmea-

sure the weighted number of common neighboring anchor nodes.
Recall Eq. (4), L(𝑢, 𝑣) = L(𝑢, 𝑥) = 0 and L(𝑎, 𝑥) = 1, then we have

S(𝑢, 𝑣) = 𝛼Ã1 (𝑢, :)LÃ2 (:, 𝑣) + (1 − 𝛼)L(𝑢, 𝑣)
S(𝑢, 𝑥) = 𝛼Ã1 (𝑢, :)LÃ2 (:, 𝑥) + (1 − 𝛼)L(𝑢, 𝑥) + 𝛼S1 (𝑢, 𝑎)

+
√
𝛼 (1 − 𝛼) A1 (𝑢, 𝑎)√

|N1 (𝑢) | |N1 (𝑎) |
S(𝑎, 𝑥) = 2𝛼Ã1 (𝑎, :)LÃ2 (:, 𝑥) + 𝛼 (S1 (𝑎, 𝑎) + S2 (𝑥, 𝑥)) + (1 − 𝛼)L(𝑎, 𝑥)

As we can see, the alignments based on the embeddings learned by
Eq. (5) in the first iteration are equivalent to the semi-supervised
FINAL (i.e., Eq. (3)) with S0 = L except the additional intra-network
proximity (e.g., S1, S2) and scaling terms. This completes the proof.

□

This lemma implies that we can design a special relational graph
convolutional network (RelGCN) to encode the alignment consis-
tency. Specifically, we formulate the 𝑡-th RelGCN layer as

u𝑡 =
√
𝛼

∑
𝑏∈N1 (𝑢)

W𝑡
1b

𝑡−1√
|N1 (𝑢) | |N1 (𝑏) |

+
√

1 − 𝛼W𝑡
0u

𝑡−1

v𝑡 =
√
𝛼

∑
𝑦∈N2 (𝑣)

W𝑡
2y

𝑡−1√
|N2 (𝑣) | |N2 (𝑦) |

+
√

1 − 𝛼W𝑡
0v

𝑡−1

a𝑡 = x𝑡 =
√
𝛼

∑
𝑏∈N1 (𝑎)

W𝑡
1b

𝑡−1√
|N1 (𝑎) | |N1 (𝑏) |

+
√

1 − 𝛼W𝑡
0x

𝑡−1

+
√
𝛼

∑
𝑦∈N2 (𝑥)

W𝑡
2y

𝑡−1√
|N2 (𝑥) | |N2 (𝑦) |

(6)

where W𝑡
0,W

𝑡
1,W

𝑡
2 ∈ R𝑑𝑡×𝑑𝑡−1 and 𝑑𝑡 denotes the embedding di-

mension in the 𝑡-th layer of RelGCN. Note the slight differences
between RelGCN and the existing R-GCN [20] are the normaliza-
tion terms and additional scaling terms. In addition, we name the
RelGCN layer without weight parameters (i.e., Eq. (5)) as RelGCN-U.

We then design the whole model architecture shown in Figure
2. The key idea is to leverage RelGCNs to learn node embeddings
that describe the relative ‘positions’ of the nodes w.r.t. the anchor
nodes [27], followed by a linear layer to learn the final output em-
beddings. In particular, given the prior alignment matrix L, we first
decompose it into two rank-𝐿 matrices by L = L𝑇1 L2 as the initial
embeddings. Then we feed them into RelGCN-U to incorporate the
alignment consistency. However, with one RelGCN-U layer, only
those nodes that are connected with anchor nodes can be reached
by propagation from anchor nodes, while other distant non-anchor
nodes cannot be reached. In this way, we apply random walk with
restart [24] to measure the proximities of non-anchor nodes w.r.t.
the anchor nodes as the initial relative positions, i.e.,

r𝑖1 = (1 − 𝑝)Â1r𝑖1 + 𝑝 ê𝑖1, r𝑖2 = (1 − 𝑝)Â2r𝑖2 + 𝑝 ê𝑖2

where the restart probability 𝑝 is set to 0.85 following the clas-
sic choice, and Â1, Â2 are the normalized matrices of A1,A2. The
restart vectors ê𝑖1 ∈ R𝑛1 , ê𝑖2 ∈ R𝑛2 only have one nonzero value
at ê𝑖1 (𝑎) = 1 and ê𝑖2 (𝑥) = 1. After achieving the stationary distri-
butions, we set u0 = [r11 (𝑢), r21 (𝑢), · · · , r𝐿1 (𝑢)] ′ for non-anchor
node-𝑢 in G1, and similarly for non-anchor nodes 𝑣 in G2. We
denote the output embeddings by RelGCN-U by, say, a1, x1, u1, v1.

However, the alignment scores among the close neighborhood
might be too consistent with each other to distinguish the precise
node alignments due to the over-smoothness (e.g., alignments of
(𝑐, 𝑓 ) and (𝑐, 𝑔) in Figure 2). To mitigate the issue, we leverage
RelGCN with attention mechanism to rescale the relative positions.
Mathematically, the attention coefficients are computed by

û =
√
𝛼

∑
𝑏∈N1 (𝑢)

W1X1 (:, 𝑏)√
|N1 (𝑢) | |N1 (𝑏) |

+
√

1 − 𝛼W0X1 (:, 𝑢)

â = x̂ =
√
𝛼

∑
𝑏∈N1 (𝑎)

W1X1 (:, 𝑏)√
|N1 (𝑎) | |N1 (𝑏) |

+
√

1 − 𝛼W0X1 (:, 𝑎)

+
√
𝛼

∑
𝑦∈N2 (𝑥)

W2X2 (:, 𝑦)√
|N2 (𝑥) | |N2 (𝑦) |

𝑐𝑢𝑎 =
exp (w′

𝑐 [û∥â])∑
𝑏∈L1 exp (w′

𝑐 [û∥b̂])
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Figure 2: Overall architecture of NeXtAlign.

and similarly for computing 𝑐𝑣𝑥 where w𝑐 is a parameter vector.
We scale the relative positions by

ũ = û ⊙ c𝑢 , ṽ = v̂ ⊙ c𝑣, ã = x̃ = x̂ ⊙ c𝑥 (7)
where c𝑢 (𝑖) = 𝑐𝑢𝑎, c𝑣 (𝑖) = 𝑐𝑣𝑥 . To learn the final output node
embeddings, we apply a simple linear layer, i.e.,

u = Wũ, v = Wṽ, a = x = Wx̃ (8)
where W ∈ R𝑑×|L | is the corresponding weight parameter matrix.

3.3 Model Training
To learn the node embeddings, we first consider the following
loss functions on anchor links that capture both intra-network
information by 𝐽𝑎, 𝐽𝑥 and inter-network information by 𝐽𝑎𝑥 .

𝐽𝑎 = −
∑
𝑏

[
𝑝𝑑 (𝑏 |𝑎) log𝜎 (b′a) + 𝑘𝑝𝑛 (𝑏 |𝑎) log𝜎 (−b′a)

]
𝐽𝑥 = −

∑
𝑦

[
𝑝𝑑 (𝑦 |𝑥) log𝜎 (y′x) + 𝑘𝑝𝑛 (𝑦 |𝑥) log𝜎 (−y′x)

]
𝐽𝑎𝑥 = −

∑
𝑏

[
𝑝𝑑𝑐 (𝑏 |𝑥) log𝜎 (b′x) + 𝑘𝑝𝑛𝑐 (𝑏 |𝑥) log𝜎 (−b′x)

]
−
∑
𝑦

[
𝑝𝑑𝑐 (𝑦 |𝑎) log𝜎 (y′a) + 𝑘𝑝𝑛𝑐 (𝑦 |𝑎) log𝜎 (−y′a)

]
𝐽 =

∑
(𝑎,𝑥) ∈L

𝐽(𝑎,𝑥) =
∑

(𝑎,𝑥) ∈L
𝐽𝑎 + 𝐽𝑥 + 𝐽𝑎𝑥

where 𝜎 (·) is the sigmoid function. The probability distributions
𝑝𝑑 , 𝑝𝑛 sample the positive and negative context node pairs within
the same network respectively, while 𝑝𝑑𝑐 , 𝑝𝑛𝑐 sample positive and
negative alignment pairs across different networks. Note that in the
above loss functions, we assume for simplicity that the probabilities
for the same goal are calculated by the same function (e.g., 𝑝𝑑 (·|𝑎)
in G1 vs. 𝑝𝑑 (·|𝑥) in G2 using the same function but different inputs)
and the numbers of negative samples by 𝑝𝑛, 𝑝𝑛𝑐 are same (i.e., 𝑘).
Since a = x, ∀(𝑎, 𝑥) ∈ L, we can rewrite the loss related to the
anchor link (𝑎, 𝑥) as below.

𝐽(𝑎,𝑥) = −
∑
𝑏

[
[𝑝𝑑 (𝑏 |𝑎) + 𝑝𝑑𝑐 (𝑏 |𝑥)] log𝜎 (b′x)

+ 𝑘 [𝑝𝑛 (𝑏 |𝑎) + 𝑝𝑛𝑐 (𝑏 |𝑥)] log𝜎 (−b′x)
]

(9)

−
∑
𝑦

[
[𝑝𝑑 (𝑦 |𝑥) + 𝑝𝑑𝑐 (𝑦 |𝑎)] log𝜎 (y′x)

+ 𝑘 [𝑝𝑛 (𝑦 |𝑥) + 𝑝𝑛𝑐 (𝑦 |𝑎)] log𝜎 (−y′x)
]

(10)

For the anchor link (𝑎, 𝑥), we derive the conditions of the optimal
node embedding that minimize 𝐽(𝑎,𝑥) inspired by [28].

Lemma 2. Given an anchor link (𝑎, 𝑥), the optimal embeddings

that minimize 𝐽(𝑎,𝑥) satisfy for non-anchor nodes 𝑏 ∈ L̄1, 𝑦 ∈ L̄2,

b′x = − log
𝑘𝑝𝑛 (𝑏 |𝑎) + 𝑘𝑝𝑛𝑐 (𝑏 |𝑥)
𝑝𝑑 (𝑏 |𝑎) + 𝑝𝑑𝑐 (𝑏 |𝑥)

(11)

y′x = − log
𝑘𝑝𝑛 (𝑦 |𝑥) + 𝑘𝑝𝑛𝑐 (𝑦 |𝑎)
𝑝𝑑 (𝑦 |𝑥) + 𝑝𝑑𝑐 (𝑦 |𝑎)

(12)

and for anchor nodes such that (𝑏,𝑦) ∈ L,

b′x = y′x = − log
𝑘 [𝑝𝑛 (𝑏 |𝑎) + 𝑝𝑛𝑐 (𝑏 |𝑥) + 𝑝𝑛 (𝑦 |𝑥) + 𝑝𝑛𝑐 (𝑦 |𝑎) ]
𝑝𝑑 (𝑏 |𝑎) + 𝑝𝑑𝑐 (𝑏 |𝑥) + 𝑝𝑑 (𝑦 |𝑥) + 𝑝𝑛𝑐 (𝑦 |𝑎)

(13)

Proof. See Appendix. □

However, the above lemma requires sufficient sampled node
pairs, while we only have a limited number of samples in the real
case. In this way, we further consider to minimize the empirical
risk for an anchor link (𝑎, 𝑥) as

𝐽 𝐵(𝑎,𝑥 ) = − 1
𝐵

∑
𝑖1,𝑖2, 𝑗1, 𝑗2

log𝜎 (b′𝑖1x) + log𝜎 (b′𝑖2x) + log𝜎 (y′𝑗1x) + log𝜎 (y′𝑗2x)

− 1
𝐵

∑
𝑖3,𝑖4, 𝑗3, 𝑗4

[
log𝜎 (−b′𝑖3x) + log𝜎 (−b′𝑖4x) + log𝜎 (−y′𝑗3x)

+ log𝜎 (−y′𝑗4x) ]
]

where 𝐵 is the number of positive samples and accordingly 𝑘𝐵 is the
size of negative samples. In addition, (1) 𝑏𝑖1 , 𝑦 𝑗1 are sampled from
𝑝𝑑 (·|𝑎), 𝑝𝑑 (·|𝑥), (2) 𝑏𝑖2 , 𝑦 𝑗2 are sampled from 𝑝𝑑𝑐 (·|𝑥), 𝑝𝑑𝑐 (·|𝑎), (3)
𝑏𝑖3 , 𝑦 𝑗3 are sampled from 𝑝𝑛 (·|𝑎), 𝑝𝑛 (·|𝑥), and (4) 𝑏𝑖4 , 𝑦 𝑗4 are sam-
pled from 𝑝𝑛𝑐 (·|𝑥), 𝑝𝑛𝑐 (·|𝑎) respectively. Furthermore, by defining
𝜽 = [b′1x, · · · , b

′
𝑛1x, y

′
1x, · · · , y

′
𝑛2x], we denote 𝜽

∗ as the optimal
solution to 𝐽(𝑎,𝑥) and 𝜽𝐵 similarly for the empirical risk 𝐽𝐵(𝑎,𝑥) . Then
we can derive the mean square error in the following lemma.

Lemma 3. Denote Δ𝜽𝑏 = 𝜽𝐵
𝑏
− 𝜽 ∗

𝑏
and Δ𝜽𝑦 = 𝜽𝐵𝑦 − 𝜽 ∗𝑦 . The mean

square errors for nodes 𝑏 ∈ L̄1 and 𝑦 ∈ L̄2 can be formulated by

E
[
Δ𝜽 2

𝑏

]
=

1
𝐵

[
1

𝑝𝑑 (𝑏 |𝑎) + 𝑝𝑑𝑐 (𝑏 |𝑥)
+ 1
𝑘𝑝𝑛 (𝑏 |𝑎) + 𝑘𝑝𝑛𝑐 (𝑏 |𝑥)

−𝐶

]
E[Δ𝜽 2

𝑦 ] =
1
𝐵

[
1

𝑝𝑑 (𝑦 |𝑥) + 𝑝𝑑𝑐 (𝑦 |𝑎)
+ 1
𝑘𝑝𝑛 (𝑦 |𝑥) + 𝑘𝑝𝑛𝑐 (𝑦 |𝑎)

−𝐶

]
(14)

For nodes 𝑏 ∈ L1 and 𝑦 ∈ L2, the mean square error is computed by

E
[
Δ𝜽 2

𝑏

]
= E[Δ𝜽 2

𝑦] =
1
𝐵

[
1
𝑝1

+ 1
𝑘𝑝2

−𝐶
]

(15)
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Figure 3: Illustration of embedding interactions.
where𝐶 = 1 + 1

𝑘
, 𝑝1 = 𝑝𝑑 (𝑏 |𝑎) + 𝑝𝑑𝑐 (𝑏 |𝑥) + 𝑝𝑑 (𝑦 |𝑥) + 𝑝𝑑𝑐 (𝑦 |𝑎) and

𝑝2 = 𝑝𝑛 (𝑏 |𝑎) + 𝑝𝑛𝑐 (𝑏 |𝑥) + 𝑝𝑛 (𝑦 |𝑥) + 𝑝𝑛𝑐 (𝑦 |𝑎).

Proof. See Appendix. □

Given the above lemma, the question now comes to how to design

these distributions. For a single network where only 𝑝𝑑 and 𝑝𝑛 are
considered, [28] proposes that 𝑝𝑛 is positively correlated to 𝑝𝑑 . And
if node-𝑏 has a high embedding similarity with node-𝑎, it is likely
to be a negative sample. This can be considered as a hard negative
sample which in the task of recommendation could separate the
negative items from positive ones for a certain user. However, in
pairwise network alignment where we have two input networks,
different sampling distributions serve different purposes, which as
we show in the following may lead to the competing designs. First
(for 𝑝𝑑 ), a typical goal of 𝑝𝑑 is to sample nodes that are similar to
the center nodes such that the sampled nodes are likely to co-occur
with the center nodes in some manually extracted contexts [8, 16].
Second (for 𝑝𝑛), we follow the intuition in unsupervised network
embedding that close neighbors should be similar while distant
nodes should be dissimilar in terms of embedding vectors [14]. This
implies that distant/dissimilar nodes are more likely to be sampled
by 𝑝𝑛 . Third (for 𝑝𝑑𝑐 ), we use it to sample positive alignment pairs
across networks that are likely to form the alignments and preserve
the alignment consistency similar to Eq. (1). This implies 𝑝𝑑𝑐 should
be positively correlated to the embedding similarities. Fourth (for
𝑝𝑛𝑐 ), we first note that network alignment can be considered as a
special recommendation task where the anchor link of two nodes
is analogized as the only positive item for a user. In this way, we
would like to use 𝑝𝑛𝑐 to provide hard negative alignment pairs as in
recommendation [18, 28]. That is, nodes in G1 that currently have
high embedding similarities with anchor node-𝑥 are likely to be the
hard negative samples. By doing so, we could attain the alignment

disparity. That is, the embeddings of the nodes that are likely to
mislead the alignments are encouraged to be more separable from
node-𝑥 . We remark that while selecting nodes as the negative align-
ment pairs, they are supposed not to violate the overall alignment
consistency. In addition, given Lemma 3 and the design principles
of 𝑝𝑑 , 𝑝𝑛, 𝑝𝑑𝑐 , in order to estimate high-probability node pairs (i.e.,
high 𝑝𝑑 , 𝑝𝑑𝑐 and low 𝑝𝑛) more accurately, we need 𝑝𝑛𝑐 to be large
which coincides with the designed positive correlation.

But with these designs, nodes that have high embedding simi-
larities to anchor nodes are likely to be sampled as both positive
context/alignment pairs and negative alignment pairs. In other
words, suppose node-𝑏 is sampled to form a positive context pair
with anchor node-𝑎 and a negative alignment pair with the anchor
node-𝑥 simultaneously. Then according to Eq. (9), it means that the
node pair (𝑏, 𝑥) should be classified into both the positive class and
the negative class, i.e., two competing objectives. To address this
issue, instead of simply using b′x to compute 𝑝𝑑 , 𝑝𝑛, 𝑝𝑑𝑐 , 𝑝𝑛𝑐 , we di-
vide the node embedding vectors to two parts, i.e., b = [b(1) ∥b(2) ]
and x = [x(1) ∥x(2) ] where b(1) , b(2) , x(1) , x(2) ∈ R𝑑/2. Each part
of the vector aims to capture different information. Take b of node-𝑏
in G1 as an example. Here, b(1) captures the local neighborhood
information of node-𝑏 in G1 while b(2) encodes how node-𝑏 posits
in the context of G2. Then we are able to design a new alignment
scoring function that allows the interactions among different parts
of embeddings as shown in Figure 3. Specifically, we define

b★ x = 𝑤1b′(1)x(1) +𝑤2b′(1)x(2) +𝑤3b′(2)x(1) +𝑤4b′(2)x(2) (16)

where [𝑤1,𝑤2,𝑤3,𝑤4] is a vector of parameters to be learned that
measure the importance of different terms. By replacing the original
inner products in 𝐽𝐵(𝑎,𝑥) with Eq. (16), the embedding similarities
are determined by different aspects. In particular, since a = x, the
first term b′(1)x(1) = b′(1)a(1) implies the intra-network proximity
between node-𝑏 in G1 and anchor node-𝑥 and hence can be used
in the sampling probabilities 𝑝𝑑 (𝑏 |𝑎) and 𝑝𝑛 (𝑏 |𝑎). Second, the last
term b′(2)x(1) describes how likely, in the context of G2, node-𝑏
interacts with anchor node-𝑥 , and thus can be used to measure to
what extent they are aligned. In this way, this term can be used in
the sampling distribution 𝑝𝑑𝑐 (𝑏 |𝑥). Lastly, the middle two terms
capture how likely that two nodes 𝑏 and 𝑥 are interacted in a way
similar as in recommendation. For example, the term b′(1)x(2) can
be considered as the way we do inner products in social recom-
mendation as b(1) and x(2) are the embeddings of two nodes in
the context of their own networks. This allows us to use this two
terms to formulate the cross-network negative sampling distribu-
tion 𝑝𝑛𝑐 (𝑏 |𝑥) to provide hard negative samples. Consequently, the
probability distributions for G1 can be formulated as

𝑝𝑑 (𝑏 |𝑎) =
𝜎 (b′(1)x(1) )∑

𝑐∈V1 𝜎 (c′(1)x(1) )
(17)

𝑝𝑛 (𝑏 |𝑎) =
𝜎 (−b′(1)x(1) )∑

𝑐∈V1 𝜎 (−c′(1)x(1) )
(18)

𝑝𝑑𝑐 (𝑏 |𝑥) =
𝜎 (b′(2)x(2) )∑

𝑐∈V1 𝜎 (c′(2)x(2) )
(19)

𝑝𝑛𝑐 (𝑏 |𝑥) =
𝜎 (b′(1)x(2) + b′(2)x(1) )∑

𝑐∈V1 𝜎 (c′(1)x(2) + c′(2)x(1) )
(20)

and for G2 they can be computed similarly. In this way, we can
encode different aspects of the sampling design principles simul-
taneously and strike a balance among them through the learning
process. Since the real 𝑝𝑑 is often unknown and we define its ap-
proximation by node2vec [8] to explicitly provide positive context
pairs. In addition, as aforementioned, the true positive alignment



pair for an anchor node is the anchor link itself. Thus the nodes
sampled by 𝑝𝑑𝑐 (𝑏 |𝑥) can only be considered to form the intermedi-

ate positive alignment pairs. In this way, we add another loss term
in 𝐽𝐵(𝑎,𝑥) to encode the differences between the anchor links and
intermediate positive alignment pairs, which gives the final loss

𝐽𝐵(𝑎,𝑥) =
1
𝐵

∑
𝑖1

log𝜎 (b𝑖1 ★ x) + 1
𝐵

∑
𝑗1

log𝜎 (y𝑗1 ★ x)

+ 1
𝐵

∑
𝑖2

log𝜎 (b𝑖2 ★ x) + max{0, 𝜎 (b𝑖2 ★ x) − 𝜎 (x★ x) + _}

+ 1
𝐵

∑
𝑗2

log𝜎 (y𝑗2 ★ x) + max(0, 𝜎 (y𝑗2 ★ x) − 𝜎 (x★ x) + _)

+ 1
𝐵

∑
𝑖3,𝑖4

log𝜎 (−b𝑖3 ★ x) + log𝜎 (−b𝑖4 ★ x)

+ 1
𝐵

∑
𝑗3, 𝑗4

log𝜎 (−y𝑗3 ★ x) + log𝜎 (−y𝑗4 ★ x)

where _ is the margin.

4 EXPERIMENTAL RESULTS
We evaluate the proposed NeXtAlign in the following aspects:

• Q1. How accurate is NeXtAlign for network alignment?
• Q2. To what extent does the proposed method benefit from
different components of the model?

4.1 Experimental Setup
The statistics of the datasets are summarized in Table 2. Detailed
descriptions and settings are introduced in Appendix1.

4.2 Effectiveness Results
Alignment without node attributes.We first evaluate the align-
ment performance without using node attributes under different
training ratios. The results of the experiments using 20% and 10%
training data are summarized in Table 3 and Table 4 respectively.
We have the following observations. First, by comparing with the
consistency-based semi-supervised FINAL, our proposed method
achieves an up to 20% improvement in both Hits@30 and Hits@10,
which indicates that despite their close relationships in capturing
the alignment consistency, our proposed method benefits from
encompassing alignment disparity. Second, our proposed method
consistently outperforms all the other embedding based alignment
methods (i.e., Bright, NetTrans, IONE and CrossMNA). In particular,
our method achieves an at least 3% improvement in Hits@30 com-
pared to the best competitor. This demonstrates that ourmethod can
learn more meaningful node embeddings for the task of network
alignment. Third, in the scenarios S2 and S3 where networks to be
aligned are disparate with each other in terms network structure
(e.g., significant differences in edge density), our proposed method
achieves more improvements over the baseline methods than in
the scenario S1. This implies that our method can perform better to
align networks where alignment consistency might not be much
helpful. Lastly, even with fewer training data (i.e., 10% training
data), our method still outperforms other baseline methods.
Alignment with node attributes.Moreover, we evaluate the per-
formance of node attributed network alignment in S1. The results

1The code can be found at https://github.com/sizhang92/NextAlign-KDD21.

Table 2: Data statistics.
Scenarios Networks # of nodes # of edges # of attributes

S1 ACM 9,872 39,561 17
DBLP 9,916 44,808 17

S2 Foursquare 5,313 54,233 0
Twitter 5,120 130,575 0

S3 Phone 1,000 41,191 0
Email 1,003 4,627 0

are shown in Table 5. As we can see, all the methods benefit a
lot from leveraging node attributes to infer more accurate node
alignments. In the meanwhile, our method still outperforms all the
other baseline methods under different training ratios.

4.3 Analysis of the Method
In this subsection, we conduct several ablation studies to validate
different components of the proposed method.
Ablation study on model design. We compare our proposed
method with the following variants: (1) RWR, which uses initial
embeddings with pre-positioning by random walk with restart (e.g.,
u0, v0), (2) RelGCN-U, which uses the output embedding by RelGCN-
U layer as the output node embeddings, and (3) RelGCN-C, which
uses the re-scaled relative positions as the final embeddings (e.g.,
ũ). The results are shown in Figure 4. As we can see, the proposed
method NeXtAlign performs the best, validating the necessities of
all components in the whole model.
Ablation study on sampling strategies. To demonstrate that our
proposed sampling method is indeed beneficial, we compare our
proposed method with different variants by changing the sampling
strategies. Specifically, we compare with the model variants that
for an anchor node-𝑥 , (1 - uniform) uniformly at random sample
negative context pairs and alignment pairs, (2 - degree) sample
negative pairs based on the node degree (e.g., 𝑝𝑛 (𝑣 |𝑥) ∝ 𝑑3/4

𝑣 and
𝑝𝑛𝑐 (𝑢 |𝑥) ∝ 𝑑

3/4
𝑢 ), and (3 - positive) sample nodes by the distri-

bution which is positively correlated to the inner product among
node embeddings (e.g., 𝑝𝑛 (𝑣 |𝑥) ∝ 𝜎 (v′x) and 𝑝𝑛𝑐 (𝑢 |𝑥) ∝ 𝜎 (u′x)).
The results are summarized in Table 6. We observe that the pre-
defined sampling strategies perform the worst. While using posi-
tively correlation helps improve the alignment performance against
the pre-defined distributions, our proposed sampling strategy still
performs the best. This validates the benefits of using both negative
correlation and positive correlation.
Ablation study on Eq. (16). Here, we compare the alignment per-
formance with the model variant by replacing the scoring function
Eq. (16) with the simple inner product using 20% training data. As
we can see in Figure 5, using Eq. (16) indeed boosts the performance.
Parameter study on the number of negative samples. More-
over, we analyze how alignment performance varies with different
number of negative samples 𝑘 = [1, 5, 10, 20, 50, 100, 500] on differ-
ent datasets. The comparisons are shown in Figure 6. As we can
see, the alignment performance is stable under different settings of
sampling size 𝑘 . In addition, using a relative small size of negative
samples (i.e., 𝑘 ∈ [5, 20]) achieves a good overall performance.

5 RELATEDWORKS
Network alignment.Many network alignment methods explicitly
formulate the alignment consistency into various optimization prob-
lems. A classic formulation of network alignment is to minimize

https://github.com/sizhang92/NextAlign-KDD21


Table 3: Results with 20% training data.
ACM-DBLP Foursquare-Twitter Phone-Email

Hits@10 Hits@30 Hits@10 Hits@30 Hits@10 Hits@30
NeXtAlign 0.8417±0.0032 0.9011±0.0081 0.2956±0.0096 0.4174±0.0066 0.3926±0.0168 0.6748±0.0105
Bright 0.7904±0.0041 0.8669±0.0041 0.2500±0.0154 0.3206±0.0097 0.2570±0.0091 0.5344±0.0086

NetTrans 0.7925±0.0065 0.8356±0.0082 0.2468±0.0036 0.3458±0.0098 0.2650±0.0025 0.5325±0.0075
FINAL 0.6768±0.0080 0.8237±0.0098 0.2357±0.0091 0.3457±0.0091 0.2203±0.0151 0.4586±0.0184
IONE 0.7476±0.0125 0.8453±0.0097 0.1624±0.0109 0.2918±0.0209 0.3779±0.0131 0.6444±0.0084

CrossMNA 0.6532±0.0042 0.7900±0.0041 0.0236±0.0172 0.0751±0.0384 0.1542±0.0041 0.4045±0.0115

Table 4: Results with 10% training data.
ACM-DBLP Foursquare-Twitter Phone-Email

Hits@10 Hits@30 Hits@10 Hits@30 Hits@10 Hits@30
NeXtAlign 0.7242±0.0035 0.8156±0.0018 0.1946±0.0115 0.2969±0.0149 0.2785±0.0165 0.5446±0.0185
Bright 0.7022±0.0068 0.7640±0.0068 0.1705±0.0034 0.2454±0.0096 0.2027±0.0133 0.4530±0.0099

NetTrans 0.6385±0.0076 0.7402±0.0099 0.1581±0.0021 0.2410±0.0076 0.1767±0.0085 0.4089±0.0105
FINAL 0.4602±0.0092 0.6490±0.0074 0.1387±0.0087 0.2371±0.0124 0.1749±0.0124 0.3857±0.0158
IONE 0.4773±0.0181 0.6108±0.0168 0.069±0.0142 0.1670±0.0219 0.1802±0.0087 0.4440±0.0093

CrossMNA 0.3690±0.0071 0.5063±0.0065 0.0242±0.0038 0.0775±0.0085 0.1139±0.0085 0.3506±0.0132

Table 5: Alignment on ACM-DBLP with attributes.
10% training data 20% training data

Hits@10 Hits@30 Hits@10 Hits@30
NeXtAlign 0.785±0.010 0.871±0.009 0.872±0.016 0.942±0.003
Bright 0.781±0.004 0.862±0.003 0.797±0.004 0.870±0.006

NetTrans 0.708±0.004 0.846±0.009 0.841±0.010 0.916±0.013
FINAL 0.651±0.013 0.817±0.009 0.825±0.008 0.916±0.006

Table 6: Ablations study on sampling strategies by Hits@30.
ACM-DBLP Foursquare-Twitter Phone-Email

NeXtAlign 0.9277 0.4103 0.6813
Uniform 0.8975 0.3924 0.6525
Degree 0.9093 0.3923 0.6637
Positive 0.9097 0.4040 0.6650

ACM-DBLP Foursquare-Twitter Phone-Email
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

H
it
s
@

3
0

RWR

RelGCN-U

RelGCN-C

NeXtAlign

(a) 10% training data.

ACM-DBLP Foursquare-Twitter Phone-Email
0

0.2

0.4

0.6

0.8

1

H
it
s
@

3
0

RWR

RelGCN-U

RelGCN-C

NeXtAlign

(b) 20% training data.
Figure 4: Ablation study on model architecture.
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Figure 5: Ablation study on the scoring function.
∥A2 − P′A1P∥2

𝐹
where P is constrained to be a permutation matrix.

However, this leads to a NP-hard problem. To solve it, a variety of
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Figure 6: Hits@30 with different sizes of negative samples.
approximation methods have been proposed, including orthogonal
relaxation [5], sparse probabilistic relaxation [31] and doubly sto-
chastic relaxation [10]. Moreover, the alignment consistency can be
also formulated into maximizing the number of neighboring node
pairs that are aligned [2]. Zhang et al. interpret the classic random
walk based method IsoRank [21] as an optimization problem that
minimizes the alignment differences of neighboring node pairs [32].
Additionally, there exist many methods that implicitly maximize
the alignment consistency. For example, MAGNA aims to optimize
the edge conservation by a generic algorithm [19] and MAGNA++
encodes both node and edge conservation [25]. However, alignment
consistency itself might over-smoothen the alignments.

Many embedding based methods have been proposed to infer
node alignments by learning node embeddings [3, 9, 13, 27, 37].
Many of them can more or less mitigate the over-smoothness by
sampling negative alignment pairs. However, their negative sam-
pling distributions are mostly pre-defined, which might be insuf-
ficient to correctly encourage the alignment disparity. Besides, in
the unsupervised setting, adversarial learning can be used to align
nodes by matching node embedding distributions [4, 17].
Negative sampling. Negative sampling has been widely used
in many tasks such as word embedding [15], recommendation
[6, 29, 38] and network embedding [16, 28, 36]. For network embed-
ding, one common choice is to sample negative nodes based on the



node degree [8, 16]. More recently, Yang et al. systematically study
negative sampling in network embedding and propose the negative
sampling distribution should be positively and sub-linearly corre-
lated to the positive sampling distribution [28]. In the meanwhile,
some other works advocate a competing design to sample distant
nodes that are expected to be dissimilar to the center nodes [1, 14].

6 CONCLUSION
In this paper, we study the semi-supervised network alignment
problem. Different from the existing works, we aim to encompass
both alignment consistency and alignment disparity. Specifically,
we unveil that the node embeddings learned by the special graph
convolutional network RelGCN-U can infer node alignments that
preserve alignment consistency. Furthermore, we theoretically an-
alyze the expected loss and empirical loss, which motivates the
designs of sampling distributions in network alignment. Based on
these, we propose a novel network alignment method NeXtAlign
that achieves a good trade-off between alignment consistency and
alignment disparity via the learning process. Extensive experiments
show that the proposed method significantly outperforms all the
baseline methods.
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Reproducibility
Dataset descriptions. We evaluate the performance of network
alignment in three different scenarios, and the datasets that we use
to construct them are described as below.

• S1 - ACM-DBLP [33]. In this scenario, we want to align two
undirected co-author networks ACM and DBLP that are
extracted from the papers in four areas (DM, ML, DB and IR)
and their corresponding citation information [23]. In these
co-author networks, nodes represent authors and there exists
an edge between two nodes if they are co-authors of at least
one paper. Specifically, the ACM co-author network has 9,872
nodes and 39,561 edges. The DBLP co-author network has
9,916 nodes and 44,808 edges. The attributes of each node
indicate the number of papers that are published in different
venues by that author. There exist 6,325 common authors
across two networks used as the groundtruth alignments.

• S2 - Foursquare-Twitter [30]. In this scenario, we want to
align two social networks of Foursquare and Twitter. Each
node represent a user and edges indicate the friendships
among users. There are 5,313 nodes and 5,120 edges in the
Foursquare network. And the Twitter network has 5,120
nodes and 130,575 edges. Node attributes are not available
in these two networks. In addition, there are 1,609 common
users which are used as the groundtruth alignments.

• S3 - Phone-Email [34]. In this scenario, we aim to align the
communication networks through different channels. In par-
ticular, the Phone network corresponds to the communi-
cations among people via phone, while the Email network
describes the communications by emails. More specifically,
there exist 1,000 nodes and 41,191 edges in the Phone net-
work while the Email network is sparser with 1,003 nodes
and 4,627 edges. In addition, there are 1,000 common people
that are involved in both communication networks used as
the groundtruth alignments.

Besides, in S1-S3, we evaluate with different training ratios (i.e.,
10% and 20%). For example, with the training ratio as 10%, we
randomly select 10% of the groundtruth alignments as the training
data (i.e., anchor links) and test on the rest of the groundtruth
alignments. We repeat and randomly generate 10 sets of training
data for each alignment scenario. We evaluate the performance of
all methods, and report the mean values and standard deviations.
Baselinemethods.We compare the proposedmethodNeXtAlign
with the following semi-supervised network alignment methods:
(1) Bright [27], (2) NetTrans [35], (3) semi-supervised FINAL [32],
(4) IONE [13], and (5) CrossMNA [3].
Machine and Repeatability. The proposed model is implemented
in Pytorch. We use one Nvidia GTX 1080 as GPU. We will release
the source code and the datasets after the paper is published.
Hyperparameters settings.We use Adam optimizer with a learn-
ing rate 0.05 to train the model. We use the same hyperparameter
setting in all the three alignment scenarios. Specifically, we set
𝛼 = 0.5, _ = 0.1. In addition, we set the batch size as 300 and the
number of negative samples as 𝑘 = 20. We train the model in 50
epochs. For all embedding based methods, we learn node embed-
dings with the dimension 𝑑 = 128. The parameters in all baseline
methods are set to their defaults.

Metrics. We evaluate the effectiveness of network alignment in
terms of Hits@𝐾 . Given a test pair (𝑢, 𝑣), if node-𝑣 in G2 is among
the top-𝐾 most similar nodes to node-𝑢 in G1, we view it as a hit.
Then Hits@𝐾 is computed by Hits@𝐾 = # of hits

# of testing alignments .

Proof of Lemma 2
We prove Lemma 2 by extending the single network case [28].

Lemma. Given an anchor link (𝑎, 𝑥), the optimal embeddings that

minimize 𝐽(𝑎,𝑥) satisfy for non-anchor nodes 𝑏 ∈ L̄1, 𝑦 ∈ L̄2,

b′x = − log
𝑘𝑝𝑛 (𝑏 |𝑎) + 𝑘𝑝𝑛𝑐 (𝑏 |𝑥)
𝑝𝑑 (𝑏 |𝑎) + 𝑝𝑑𝑐 (𝑏 |𝑥)

y′x = − log
𝑘𝑝𝑛 (𝑦 |𝑥) + 𝑘𝑝𝑛𝑐 (𝑦 |𝑎)
𝑝𝑑 (𝑦 |𝑥) + 𝑝𝑑𝑐 (𝑦 |𝑎)

and for anchor nodes such that (𝑏,𝑦) ∈ L,

b′x = y′x = − log
𝑘 [𝑝𝑛 (𝑏 |𝑎) + 𝑝𝑛𝑐 (𝑏 |𝑥) + 𝑝𝑛 (𝑦 |𝑥) + 𝑝𝑛𝑐 (𝑦 |𝑎)]
𝑝𝑑 (𝑏 |𝑎) + 𝑝𝑑𝑐 (𝑏 |𝑥) + 𝑝𝑑 (𝑦 |𝑥) + 𝑝𝑛𝑐 (𝑦 |𝑎)

Proof. For node-𝑏 in G1 and node-𝑦 in G2 such that (𝑏,𝑦) ∉ L,
the main idea is to first prove that the loss functions Eq. (9) and
Eq. (10) can be minimized separately by satisfying the conditions
Eq. (11) and Eq. (12), and then prove these two conditions can
co-occur. We first define two Bernoulli distributions 𝑃𝑏,(𝑎,𝑥) (𝑧 =

1) =
𝑝𝑑 (𝑏 |𝑎)+𝑝𝑑𝑐 (𝑏 |𝑥)

𝑝𝑑 (𝑏 |𝑎)+𝑝𝑑𝑐 (𝑏 |𝑥)+𝑘𝑝𝑛 (𝑏 |𝑎)+𝑘𝑝𝑛𝑐 (𝑏 |𝑥) and 𝑄𝑏,(𝑎,𝑥) (𝑧 = 1) =

𝜎 (b′a) = 𝜎 (b′x). Then the term of node-𝑏 in Eq. (9) is
𝑂𝑏 = [𝑝𝑑 (𝑏 |𝑎)+𝑝𝑑𝑐 (𝑏 |𝑥)+𝑘𝑝𝑛 (𝑏 |𝑎)+𝑘𝑝𝑛𝑐 (𝑏 |𝑥)]𝐻 (𝑃𝑏,(𝑎,𝑥) , 𝑄𝑏,(𝑎,𝑥) )
where 𝐻 (·, ·) is the cross-entropy between two distributions. Ac-
cording to Gibbs Inequality, the minimum can be achieved when
𝑃𝑏,(𝑎,𝑥) = 𝑄𝑏,(𝑎,𝑥) , ∀𝑏 ∈ V1 − {𝑏 | (𝑏,𝑦) ∉ L}. This implies

b′x = − log
𝑘𝑝𝑛 (𝑏 |𝑎) + 𝑘𝑝𝑛𝑐 (𝑏 |𝑥)
𝑝𝑑 (𝑏 |𝑎) + 𝑝𝑑𝑐 (𝑏 |𝑥)

Similarly, we can show the loss Eq. (10) is minimized when

y′x = − log
𝑘𝑝𝑛 (𝑦 |𝑥) + 𝑘𝑝𝑛𝑐 (𝑦 |𝑎)
𝑝𝑑 (𝑦 |𝑥) + 𝑝𝑑𝑐 (𝑦 |𝑎)

Since (𝑏,𝑦) ∉ L, it is easy to see that at least one of b and y could
be an arbitrary vector as long as it satisfies the above condition.

Next, for two nodes such that (𝑏,𝑦) ∈ L, since we share the
embedding across the nodes of an anchor link (i.e., b = y), the
corresponding term in Eq. (9) is equivalent to

𝑂𝑏 = − [𝑝𝑑 (𝑏 |𝑎) + 𝑝𝑑𝑐 (𝑏 |𝑥) + 𝑝𝑑 (𝑦 |𝑥) + 𝑝𝑑𝑐 (𝑦 |𝑎)] log𝜎 (b′x)
− [𝑝𝑛 (𝑏 |𝑎) + 𝑝𝑛𝑐 (𝑏 |𝑥) + 𝑝𝑛 (𝑦 |𝑥) + 𝑝𝑛𝑐 (𝑦 |𝑎)] log𝜎 (−b′x)

Similarly, we can derive the condition for (𝑏,𝑦) ∈ L as

b′x = y′x = − log
𝑘 [𝑝𝑛 (𝑏 |𝑎) + 𝑝𝑛𝑐 (𝑏 |𝑥) + 𝑝𝑛 (𝑦 |𝑥) + 𝑝𝑛𝑐 (𝑏 |𝑎)]
𝑝𝑑 (𝑏 |𝑎) + 𝑝𝑑𝑐 (𝑏 |𝑥) + 𝑝𝑑 (𝑦 |𝑥) + 𝑝𝑛𝑐 (𝑦 |𝑎)

□

Proof of Lemma 3
Next, we provide the proof for Lemma 3 as follows.

Lemma. Denote Δ𝜽𝑏 = 𝜽𝐵
𝑏
−𝜽 ∗

𝑏
,Δ𝜽𝑦 = 𝜽𝐵𝑦 −𝜽 ∗𝑦 . The mean square

errors for non-anchor nodes 𝑏 ∈ L̄1 and 𝑦 ∈ L̄2 is computed by

E
[
Δ𝜽 2

𝑏

]
=

1
𝐵

[
1

𝑝𝑑 (𝑏 |𝑎) + 𝑝𝑑𝑐 (𝑏 |𝑥)
+ 1
𝑘𝑝𝑛 (𝑏 |𝑎) + 𝑘𝑝𝑛𝑐 (𝑏 |𝑥)

−𝐶

]
E[Δ𝜽 2

𝑦 ] =
1
𝐵

[
1

𝑝𝑑 (𝑦 |𝑥) + 𝑝𝑑𝑐 (𝑦 |𝑎)
+ 1
𝑘𝑝𝑛 (𝑦 |𝑥) + 𝑘𝑝𝑛𝑐 (𝑦 |𝑎)

−𝐶

]



For anchor nodes 𝑏 ∈ L1 and 𝑦 ∈ L2, the mean square error is

E
[
Δ𝜽 2

𝑏

]
= E[Δ𝜽 2

𝑦] =
1
𝐵

[
1
𝑝1

+ 1
𝑘𝑝2

−𝐶
]

where𝐶 = 1 + 1
𝑘
, 𝑝1 = 𝑝𝑑 (𝑏 |𝑎) + 𝑝𝑑𝑐 (𝑏 |𝑥) + 𝑝𝑑 (𝑦 |𝑥) + 𝑝𝑛𝑐 (𝑦 |𝑎) and

𝑝2 = 𝑝𝑛 (𝑏 |𝑎) + 𝑝𝑛𝑐 (𝑏 |𝑥) + 𝑝𝑛 (𝑦 |𝑥) + 𝑝𝑛𝑐 (𝑏 |𝑎).

Proof. By easing the notation ▽𝐽𝐵(𝑎,𝑥) = ▽𝜽 𝐽
𝐵
(𝑎,𝑥) as the gradi-

ent, the optimal solution 𝜽𝐵 implies ▽𝐽𝐵(𝑎,𝑥) (𝜽
𝐵) = 0, which gives

▽𝐽𝐵(𝑎,𝑥) (𝜽
𝐵) = ▽𝐽𝐵(𝑎,𝑥) (𝜽

∗)+▽2 𝐽𝐵(𝑎,𝑥) (𝜽
∗) (𝜽𝐵−𝜽 ∗)+𝑂 (∥𝜽𝐵−𝜽 ∗∥2) = 0.

Thus, up to terms of order 𝑂 (∥𝜽𝐵 − 𝜽 ∗∥2), we have
√
𝐵(𝜽𝐵 − 𝜽 ∗) = −

(
▽2 𝐽𝐵(𝑎,𝑥) (𝜽

∗)
)−1 √

𝐵▽𝐽𝐵(𝑎,𝑥) (𝜽
∗)

Next we analyze −
(
▽2 𝐽𝐵(𝑎,𝑥) (𝜽

∗)
)−1

and
√
𝐵▽𝐽𝐵(𝑎,𝑥) (𝜽

∗).

For
(
▽2 𝐽𝐵(𝑎,𝑥) (𝜽

∗)
)−1

: The gradient and Hessian matrix of the em-

pirical risk 𝐽𝐵(𝑎,𝑥) can be computed as

▽𝐽𝐵(𝑎,𝑥) (𝜽 ) = − 1
𝐵

∑
𝑖1

(1 − 𝜎 (𝜽𝑏𝑖1 ))e(𝑏𝑖1 ) −
1
𝐵

∑
𝑖2

(1 − 𝜎 (𝜽𝑏𝑖2 ))e(𝑏𝑖2 )

+ 1
𝐵

∑
𝑖3

𝜎 (𝜽𝑏𝑖3 )e(𝑏𝑖3 ) +
1
𝐵

∑
𝑖4

𝜎 (𝜽𝑏𝑖4 )e(𝑏𝑖4 )

− 1
𝐵

∑
𝑗1

(1 − 𝜎 (𝜽𝑦 𝑗1
))e(𝑦 𝑗1 ) −

1
𝐵

∑
𝑗2

(1 − 𝜎 (𝜽𝑦 𝑗2
))e(𝑦 𝑗2 )

+ 1
𝐵

∑
𝑗3

𝜎 (𝜽𝑦𝑖3 )e(𝑦 𝑗3 ) +
1
𝐵

∑
𝑗4

𝜎 (𝜽𝑦 𝑗4
)e(𝑦 𝑗4 )

▽2 𝐽𝐵(𝑎,𝑥) (𝜽 ) = 𝑓 (𝑏, 𝑖1) + 𝑓 (𝑏, 𝑖2) + 𝑓 (𝑏, 𝑖3) + 𝑓 (𝑏, 𝑖4)
+ 𝑓 (𝑦, 𝑗1) + 𝑓 (𝑦, 𝑗2) + 𝑓 (𝑦, 𝑗3) + 𝑓 (𝑦, 𝑗4)

where for example 𝑓 (𝑏, 𝑖1) = 1
𝐵

∑
𝑖1 𝜎 (𝜽𝑏𝑖1 )

(
1 − 𝜎 (𝜽𝑏𝑖1 )

)
e(𝑏𝑖1 )e

′
(𝑏𝑖1 )

and 𝑒 (𝑏𝑖1 ) is a one-hot vector which has only a 1 on the corre-
sponding dimension. According to Lemma 2, by denoting H(𝑎,𝑥) =
lim𝐵→+∞ ▽2 𝐽𝐵(𝑎,𝑥) (𝜽

∗) we have at 𝜽 = 𝜽 ∗

H(𝑎,𝑥)
𝑃−→

∑
𝑏

𝜎 (𝜽 ∗
𝑏
) (1 − 𝜎 (𝜽 ∗

𝑏
))e(𝑏)e′(𝑏)

× [𝑝𝑑 (𝑏 |𝑎) + 𝑝𝑑𝑐 (𝑏 |𝑥) + 𝑝𝑛 (𝑏 |𝑎) + 𝑝𝑛𝑐 (𝑏 |𝑥)]

+
∑
𝑦

𝜎 (𝜽 ∗𝑦) (1 − 𝜎 (𝜽 ∗𝑦))e(𝑦)e′(𝑦)

× [𝑝𝑑 (𝑦 |𝑥) + 𝑝𝑑𝑐 (𝑦 |𝑎) + 𝑝𝑛 (𝑦 |𝑥) + 𝑝𝑛𝑐 (𝑦 |𝑎)]

=
∑
𝑏∈L̄1

𝑘 [𝑝𝑑 (𝑏 |𝑎) + 𝑝𝑑𝑐 (𝑏 |𝑥)] [𝑝𝑛 (𝑏 |𝑎) + 𝑝𝑛𝑐 (𝑏 |𝑥)]
𝑝𝑑 (𝑏 |𝑎) + 𝑝𝑑𝑐 (𝑏 |𝑥) + 𝑝𝑛 (𝑏 |𝑎) + 𝑝𝑛𝑐 (𝑏 |𝑥)

e(𝑏)e
′
(𝑏)

+
∑
𝑦∈L̄2

𝑘 [𝑝𝑑 (𝑦 |𝑥) + 𝑝𝑑𝑐 (𝑦 |𝑎)] [𝑝𝑛 (𝑦 |𝑥) + 𝑝𝑛𝑐 (𝑦 |𝑎)]
𝑝𝑑 (𝑦 |𝑥) + 𝑝𝑑𝑐 (𝑦 |𝑎) + 𝑝𝑛 (𝑦 |𝑥) + 𝑝𝑛𝑐 (𝑦 |𝑎)

e(𝑦)e
′
(𝑦)

+
∑
𝑏∈L1

𝑘𝑝1𝑝2
𝑝1 + 𝑝2

e(𝑏)e
′
(𝑏) +

∑
𝑦∈L2

𝑘𝑝1𝑝2
𝑝1 + 𝑝2

e(𝑦)e
′
(𝑦)

= diag(m)
where 𝑝1 = 𝑝𝑑 (𝑏 |𝑎) + 𝑝𝑑𝑐 (𝑏 |𝑥) + 𝑝𝑑 (𝑦 |𝑥) + 𝑝𝑑𝑐 (𝑦 |𝑎) and 𝑝2 =

𝑝𝑛 (𝑏 |𝑎) + 𝑝𝑛𝑐 (𝑏 |𝑥) + 𝑝𝑛 (𝑦 |𝑥) + 𝑝𝑛𝑐 (𝑦 |𝑎).

We analyze ▽𝐽𝐵(𝑎,𝑥) (𝜽
∗) expectation and variance as follows.

E[▽𝐽𝐵(𝑎,𝑥) (𝜽
∗)] = −

∑
𝑏∈L̄1

[
𝑝𝑑 (𝑏 |𝑎) + 𝑝𝑑𝑐 (𝑏 |𝑥)] (1 − 𝜎 (𝜽 ∗𝑏 ))e(𝑏)

− 𝑘 [𝑝𝑛 (𝑏 |𝑎) + 𝑝𝑛𝑐 (𝑏 |𝑥)]𝜎 (𝜽 ∗𝑏 )e(𝑏)
]

−
∑
𝑦∈L̄2

[
𝑝𝑑 (𝑦 |𝑥) + 𝑝𝑑𝑐 (𝑦 |𝑎)] (1 − 𝜎 (𝜽 ∗𝑦))e(𝑦)

− 𝑘 [𝑝𝑛 (𝑦 |𝑥) + 𝑝𝑛𝑐 (𝑦 |𝑎)]𝜎 (𝜽 ∗𝑦)e(𝑦)
]

−
∑
𝑏∈L1

𝑝1 (1 − 𝜎 (𝜽 ∗𝑏 ))e(𝑏) − 𝑘𝑝2𝜎 (𝜽𝑏 )e(𝑏)

−
∑
𝑦∈L2

𝑝1 (1 − 𝜎 (𝜽 ∗𝑦))e(𝑦) − 𝑘𝑝2𝜎 (𝜽𝑦)e(𝑦)

= 0

Cov[▽𝐽𝐵(𝑎,𝑥) (𝜽
∗)] = E

[
▽𝐽𝐵(𝑎,𝑥) (𝜽

∗) (▽𝐽𝐵(𝑎,𝑥) (𝜽
∗))′

]
=

1
𝐵

(
diag(m) − (1 + 1

𝑘
)mm′

)
Then, with H(𝑎,𝑥) and Cov[▽𝐽𝐵(𝑎,𝑥) (𝜽

∗)], we can derive the co-

variance of
√
𝐵(𝜽𝐵 − 𝜽 ∗) as

Cov
[√
𝐵(𝜽𝐵 − 𝜽 ∗)

]
= E

[√
𝐵(𝜽𝐵 − 𝜽 ∗)

√
𝐵(𝜽𝐵 − 𝜽 ∗)′

]
≈ 𝐵diag(m)−1Var

[
▽𝐽𝐵(𝑎,𝑥) (𝜽

∗)
]
(diag(m)−1)′

= diag(m)−1 − (1 + 1
𝑘
)11′

This implies that the mean square errors for non-anchor nodes
𝑏 ∈ L̄1 and 𝑦 ∈ L̄2 can be computed by

E
[
Δ𝜽 2

𝑏

]
=

1
𝐵

[
1

𝑝𝑑 (𝑏 |𝑎) + 𝑝𝑑𝑐 (𝑏 |𝑥)
+ 1
𝑘𝑝𝑛 (𝑏 |𝑎) + 𝑘𝑝𝑛𝑐 (𝑏 |𝑥)

−𝐶

]
E[Δ𝜽 2

𝑦 ] =
1
𝐵

[
1

𝑝𝑑 (𝑦 |𝑥) + 𝑝𝑑𝑐 (𝑦 |𝑎)
+ 1
𝑘𝑝𝑛 (𝑦 |𝑥) + 𝑘𝑝𝑛𝑐 (𝑦 |𝑎)

−𝐶

]
For anchor nodes 𝑏 ∈ L1 and 𝑦 ∈ L2, the mean square error is
computed by

E
[
Δ𝜽 2

𝑏

]
= E[Δ𝜽 2

𝑦] =
1
𝐵

[
1
𝑝1

+ 1
𝑘𝑝2

−𝐶
]

where Δ𝜽𝑏 = 𝜽𝐵
𝑏
−𝜽 ∗

𝑏
,Δ𝜽𝑦 = 𝜽𝐵𝑦 −𝜽 ∗𝑦 . This completes the proof. □
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