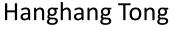


Balancing Consistency and Disparity in Network Alignment

Si Zhang



Long Jin

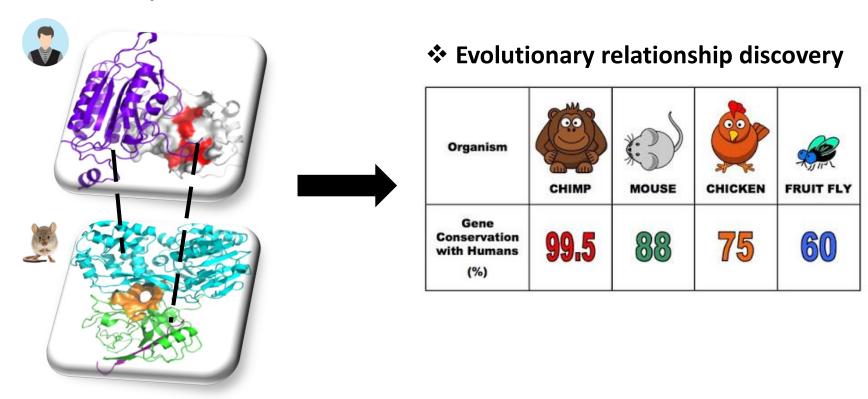
Yinglong Xia

Yunsong Guo



Network Alignment

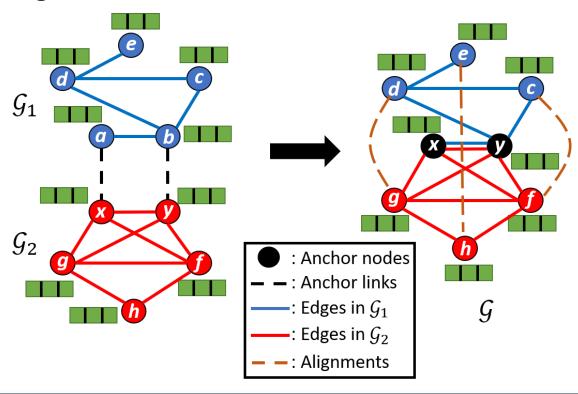
- Goal: To find node correspondence across networks
- An example:



DEA)

Problem Definition

- Given: (1) undirected networks $\mathcal{G}_1 = \{\mathcal{V}_1, A_1, X_1\}, \ \mathcal{G}_2 = \{\mathcal{V}_2, A_2, X_2\}$; (2) a set of anchor links \mathcal{L}
- Output: alignment matrix S

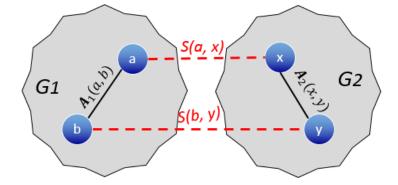


Existing Methods

- Optimization-based methods
 - Key idea: To encourage alignment consistency among neighbors
 - Example formulation (FINAL [1]):

Intuition: similar node pairs tend to have similar

neighboring node pairs



Math:

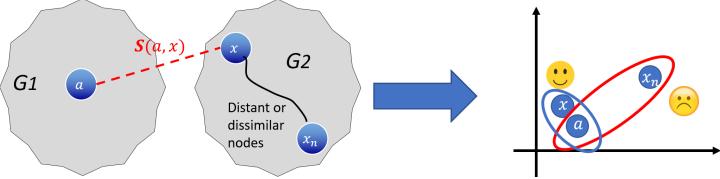
$$\min_{\mathbf{S}} \sum_{a,b,x,y} \left[\frac{\mathbf{S}(a,x)}{\sqrt{|\mathcal{N}_1(a)||\mathcal{N}_2(x)|}} - \frac{\mathbf{S}(b,y)}{\sqrt{|\mathcal{N}_1(b)||\mathcal{N}_2(y)|}} \right]^2 \mathbf{A}_1(a,b) \mathbf{A}_2(x,y)$$
neighborhood

alignment differences

Existing Methods (Con't)

- Embedding-based methods
 - Key idea: To learn node embeddings w/ negative sampling
 - Example formulation [1]:
 - Intuition: Nodes that are close in embedding space are more likely to be aligned Encourage negative samples
 - Math:

Viath:
$$\log p(x|a) \propto \log \sigma(\mathbf{x}^T \mathbf{a}) + \sum_{m=1}^K \underbrace{\sum_{x_n \sim p_n(x)}^{x_n \text{ not to be aligned with } \mathbf{a}}_{E_{x_n \sim p_n(x)} \log \sigma(-\mathbf{x}_n^T \mathbf{a})}$$



Limitation #1: Alignment Consistency

- Alignment over-smoothness issue
 - Given an anchor link (a, x), i.e., they are aligned apriori

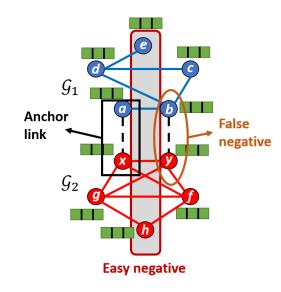
$$\min_{\mathbf{S}} \sum_{a,b,x,y} \left[\frac{\mathbf{S}(a,x)}{\sqrt{|\mathcal{N}_{1}(a)||\mathcal{N}_{2}(x)|}} - \frac{\mathbf{S}(b,y)}{\sqrt{|\mathcal{N}_{1}(b)||\mathcal{N}_{2}(y)|}} \right]^{2} A_{1}(a,b) A_{2}(x,y)$$

- Anchor link $(a, x) \rightarrow \text{High } S(a, x)$
- Minimizing alignment difference \rightarrow High S(b, y) for all neighboring node pairs
- Cannot distinguish correct alignments from misleading ones
- Equivalently, neighboring node pairs (b, y) are used as positive samples of (a, x)

Limitation #2: Alignment Disparity

- Negative sampling → disparity → reduce over-smoothness
- Competing sampling strategies

	Alignment consistency	Meaningful disparity	Example negative of anchor (a, x)
Positive correlation [1]	X	V	Node pair (b, y)
Negative correlation [2]	✓	X	Node pair (e, h)
Degree-based sampling [3]	?	?	Node pair (d,x)



^[2] Maruf, M., and Anuj Karpatne. "Maximizing Cohesion and Separation in Graph Representation Learning: A Distance-aware Negative Sampling Approach." SDM, 2021.

DEA

Balancing Consistency & Disparity

Key question:

What are the intrinsic relationships behind alignment consistency and disparity?

- Q1: How to design model architecture to encode alignment consistency?
- Q2: How to sample negative node pairs to distinguish correct alignments from misleading ones?
 - Target #1: Should not violate overall alignment consistency
 - Target #2: Should learn meaningful node embeddings

Outline

- Motivations ✓
- NeXtAlign Model
 - Model Design
 - Model Training
- Experimental Results
- Conclusions

Unsupervised FINAL [1]

$$\min_{\mathbf{S}} \sum_{a,b,x,y} \left[\frac{\mathbf{S}(a,x)}{\sqrt{|\mathcal{N}_{1}(a)||\mathcal{N}_{2}(x)|}} - \frac{\mathbf{S}(b,y)}{\sqrt{|\mathcal{N}_{1}(b)||\mathcal{N}_{2}(y)|}} \right]^{2} A_{1}(a,b) A_{2}(x,y)$$

Fixed-point solution

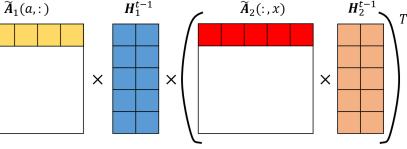
$$_{2}(x,y)$$

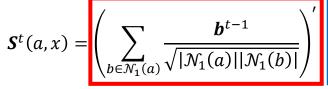
$$S^t = \widetilde{A}_1 S^{t-1} \widetilde{A}_2$$

Relationship with GCNs

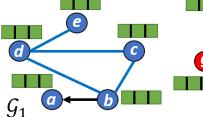
Suppose
$$\mathbf{S}^t = (\mathbf{H}_1^t)' \mathbf{H}_2^t$$

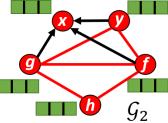
$$\mathbf{S}^t(a,x) = (\mathbf{a}^t)'\mathbf{x}^t = \widetilde{\mathbf{A}}_1(a,:)\mathbf{S}^{t-1}\widetilde{\mathbf{A}}_2(:,x)$$





$$\sum_{y \in \mathcal{N}_2(x)} \frac{y^{t-1}}{\sqrt{|\mathcal{N}_2(x)||\mathcal{N}_2(y)|}}$$





Update by GCN w/o parameters

Inner product

: message passing

Alignment Consistency by GCNs (Con't)

$$L(a, x) = 1$$

if $(a, x) \in \mathcal{L}$

$$\min_{\mathbf{S}} \alpha \sum_{a,b,x,y} \left[\frac{\mathbf{S}(a,x)}{\sqrt{|\mathcal{N}_1(a)||\mathcal{N}_2(x)|}} - \frac{\mathbf{S}(b,y)}{\sqrt{|\mathcal{N}_1(b)||\mathcal{N}_2(y)|}} \right]^2 \mathbf{A}_1(a,b) \mathbf{A}_2(x,y) + (1-\alpha) \|\mathbf{S} - \mathbf{L}\|_F^2$$

Fixed-point solution

$$\mathbf{S}^{t} = \alpha \widetilde{\mathbf{A}}_{1} \mathbf{S}^{t-1} \widetilde{\mathbf{A}}_{2} + (1 - \alpha) \mathbf{L}$$

Message passing w/o parameters

Alignment consistency

$$u^{t} = \sqrt{\alpha} \sum_{b \in \mathcal{N}_{1}(u)} \frac{b^{t-1}}{\sqrt{|\mathcal{N}_{1}(u)||\mathcal{N}_{1}(b)|}} + \sqrt{1-\alpha} u^{t-1}$$

$$v^{t} = \sqrt{\alpha} \sum_{y \in \mathcal{N}_{2}(v)} \frac{y^{t-1}}{\sqrt{|\mathcal{N}_{2}(v)||\mathcal{N}_{2}(y)|}} + \sqrt{1-\alpha} v^{t-1}$$

$$a^{t} = x^{t} = \sqrt{\alpha} \sum_{y \in \mathcal{N}_{2}(x)} \frac{b^{t-1}}{\sqrt{|\mathcal{N}_{1}(a)||\mathcal{N}_{1}(b)|}} + \sqrt{1-\alpha} x^{t-1}$$

$$+\sqrt{\alpha} \sum_{y \in \mathcal{N}_{2}(x)} \frac{y^{t-1}}{\sqrt{|\mathcal{N}_{2}(x)||\mathcal{N}_{2}(y)|}} + \sqrt{1-\alpha} x^{t-1}$$

$$+\sqrt{\alpha} \sum_{y \in \mathcal{N}_{2}(x)} \frac{y^{t-1}}{\sqrt{|\mathcal{N}_{2}(x)||\mathcal{N}_{2}(y)|}} + \sqrt{1-\alpha} x^{t-1}$$

$$+\alpha \sum_{y \in \mathcal{N}_{2}(x)} \frac{y^{t-1}}{\sqrt{|\mathcal{N}_{2}(x)||\mathcal{N}_{2}(x)|}} + \sqrt{1-\alpha} x^{t-1}$$

$$+\alpha \sum_{y \in \mathcal{N}_{2}(x)} \frac{y^{t-1}}{\sqrt{|\mathcal{N}_{2}(x)||\mathcal{N}_{2}(x)|}} + \sqrt{1-\alpha} x^{t-1}$$

$$+\alpha \sum_{y \in \mathcal{N}_{2}(x)} \frac{y^{t-1}}{\sqrt{|\mathcal{N}_{2}(x)||\mathcal{N}_{2}(x)|}} + \sqrt$$

$$S^0 = L$$

$$a^0 = x^0 = e$$

$$S(u,v) = \alpha \widetilde{A}_1(u,:) L \widetilde{A}_2(:,v) + (1-\alpha)L(u,v)$$

$$S(u,x) = \alpha \widetilde{A}_1(u,:) L \widetilde{A}_2(:,x) + (1-\alpha)L(u,x) + \alpha S_1(u,a) + \sqrt{\alpha(1-\alpha)} \frac{A_1(u,a)}{\sqrt{|\mathcal{N}_1(u)||\mathcal{N}_1(a)|}}$$

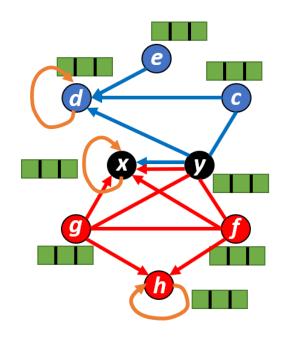
$$\mathbf{S}(a,x) = 2\alpha \widetilde{\mathbf{A}}_1(a,:) \mathbf{L} \widetilde{\mathbf{A}}_2(:,x) + (1-\alpha) \mathbf{L}(a,x) + \alpha (\mathbf{S}_1(a,a) + \mathbf{S}_2(x,x))$$

Within-network proximity

RelGCN - Relational GCN for Alignment

Message passing w/ parameters

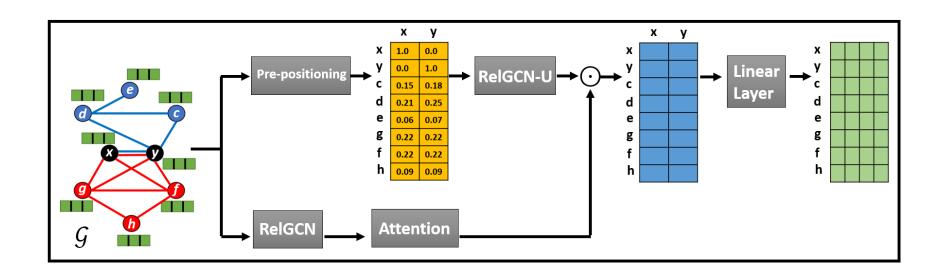
$$\begin{aligned} \boldsymbol{u}^{t} &= \sqrt{\alpha} \sum_{b \in \mathcal{N}_{1}(u)} \frac{\boldsymbol{W}_{1}^{t} \boldsymbol{b}^{t-1}}{\sqrt{|\mathcal{N}_{1}(u)||\mathcal{N}_{1}(b)|}} + \sqrt{1 - \alpha} \boldsymbol{W}_{0}^{t} \boldsymbol{u}^{t-1} \\ \boldsymbol{v}^{t} &= \sqrt{\alpha} \sum_{y \in \mathcal{N}_{2}(v)} \frac{\boldsymbol{W}_{2}^{t} \boldsymbol{y}^{t-1}}{\sqrt{|\mathcal{N}_{2}(v)||\mathcal{N}_{2}(y)|}} + \sqrt{1 - \alpha} \boldsymbol{W}_{0}^{t} \boldsymbol{v}^{t-1} \\ \boldsymbol{a}^{t} &= \boldsymbol{x}^{t} &= \sqrt{\alpha} \sum_{b \in \mathcal{N}_{1}(a)} \frac{\boldsymbol{W}_{1}^{t} \boldsymbol{b}^{t-1}}{\sqrt{|\mathcal{N}_{1}(a)||\mathcal{N}_{1}(b)|}} + \sqrt{1 - \alpha} \boldsymbol{W}_{0}^{t} \boldsymbol{x}^{t-1} \\ &+ \sqrt{\alpha} \sum_{y \in \mathcal{N}_{2}(x)} \frac{\boldsymbol{W}_{2}^{t} \boldsymbol{y}^{t-1}}{\sqrt{|\mathcal{N}_{2}(x)||\mathcal{N}_{2}(y)|}} \end{aligned}$$



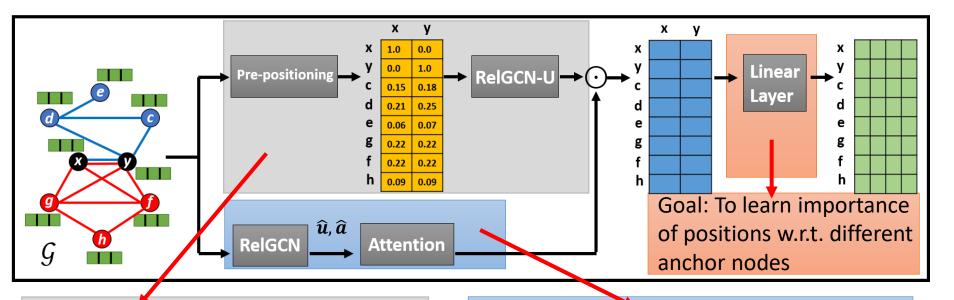
- W_0^t , W_1^t , W_2^t : parameters at the t-th layer
- RelGCN-U: variant w/o parameters

NeXtAlign - Model Design

- Key idea:
 - Use RelGCNs to compute relative positions w.r.t. anchor nodes
 - Feed to a linear layer to compute final embeddings
- Model architecture



Model Design Details



- Goal: To use RelGCN-U to encode alignment consistency
- Pre-positioning:
 - Anchor nodes: $\boldsymbol{a}^0 = \boldsymbol{x}^0 = \boldsymbol{e}_i$
 - Non-anchor nodes: RWR scores w.r.t. anchor nodes [1,2]

- Goal: To mitigate over-smoothness of RelGCN-U
- RelGCN w/ attention to rescale positions

$$c_{ua} = \frac{\exp(\mathbf{w}_c'[\widehat{\mathbf{u}}||\widehat{\mathbf{a}}])}{\sum_{b \in \mathcal{L}_1} \exp(\mathbf{w}_c'[\widehat{\mathbf{u}}||\widehat{\mathbf{b}}])}$$

Outline

- Motivations ✓
- NeXtAlign Model
 - Model Design

- Model Training
- Experimental Results
- Conclusions

NeXtAlign - Model Training

Loss functions

$$J_{a} = -\sum_{b \in \mathcal{V}_{1}} [p_{d}(b|a) \log \sigma(\mathbf{b}'\mathbf{a}) + kp_{n}(b|a) \log \sigma(-\mathbf{b}'\mathbf{a})]$$

$$J_{x} = -\sum_{\mathbf{y} \in \mathcal{V}_{2}} [p_{d}(\mathbf{y}|\mathbf{x}) \log \sigma(\mathbf{y}'\mathbf{x}) + kp_{n}(\mathbf{y}|\mathbf{x}) \log \sigma(-\mathbf{y}'\mathbf{x})]$$

$$J_{ax} = -\sum_{b \in \mathcal{V}_{1}} [p_{dc}(b|\mathbf{x}) \log \sigma(\mathbf{b}'\mathbf{x}) + kp_{nc}(b|\mathbf{x}) \log \sigma(-\mathbf{b}'\mathbf{x})]$$

$$-\sum_{\mathbf{y} \in \mathcal{V}_{2}} [p_{dc}(\mathbf{y}|a) \log \sigma(\mathbf{y}'\mathbf{a}) + kp_{nc}(\mathbf{y}|a) \log \sigma(-\mathbf{y}'\mathbf{a})]$$

Link prediction loss in G_1 , G_2

Anchor link prediction loss

$$J = \sum_{(a,x)\in\mathcal{L}} J_{a,x} = \sum_{(a,x)\in\mathcal{L}} J_a + J_x + J_{ax}$$

- p_d , p_n : within-network positive, negative sampling distributions
- p_{dc} , p_{nc} : cross-network positive, negative sampling distributions
- Question: How to design sampling distributions?

Sampling Strategy

- An intuitive design
 - p_d : similar nodes are likely to co-occur in the context [1]
 - p_n : samples distant/dissimilar nodes [2]
 - p_{dc} : high-similarity node pairs preserve alignment consistency
 - p_{nc} : high-similarity node pairs \rightarrow hard negative alignment pairs [3] \rightarrow alignment disparity

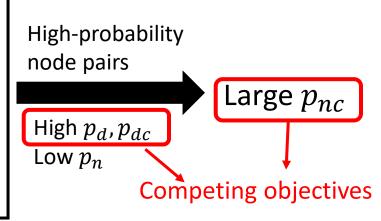
LEMMA Denote $\Delta \theta_b = \theta_b^B - \theta_b^*$ and $\Delta \theta_y = \theta_y^B - \theta_y^*$. The mean square errors for nodes $b \in \bar{\mathcal{L}}_1$ and $y \in \bar{\mathcal{L}}_2$ can be formulated by

$$\mathbb{E}\left[\Delta\theta_{b}^{2}\right] = \frac{1}{B} \left[\frac{1}{p_{d}(b|a) + p_{dc}(b|x)} + \frac{1}{kp_{n}(b|a) + kp_{nc}(b|x)} - C \right]$$

$$\mathbb{E}[\Delta\theta_{y}^{2}] = \frac{1}{B} \left[\frac{1}{p_{d}(y|x) + p_{dc}(y|a)} + \frac{1}{kp_{n}(y|x) + kp_{nc}(y|a)} - C \right]$$

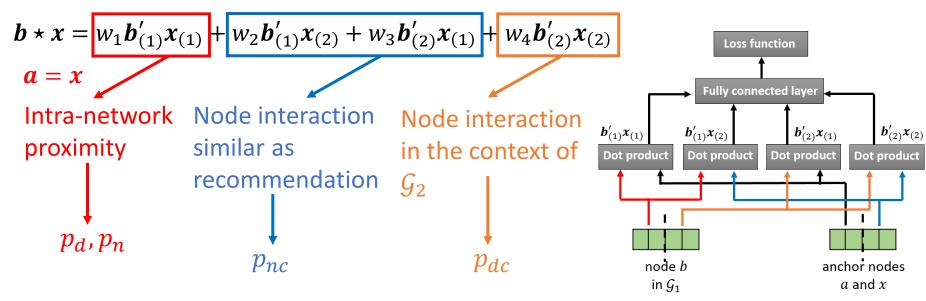
For nodes $b \in \mathcal{L}_1$ and $y \in \mathcal{L}_2$, the mean square error is computed by

$$\mathbb{E}\left[\Delta\theta_b^2\right] = \mathbb{E}\left[\Delta\theta_y^2\right] = \frac{1}{B}\left[\frac{1}{p_1} + \frac{1}{kp_2} - C\right]$$



Sampling Strategy (Con't)

- $lacksquare Denote m{b} = m{b}_{(1)} || m{b}_{(2)} m{]}, m{x} = m{x}_{(1)} || m{x}_{(2)} m{]}$
 - $b_{(1)}$: captures local information of node-b in \mathcal{G}_1
 - $b_{(2)}$: captures how node-b posits in \mathcal{G}_2
- A new scoring function → instead of plain inner product



Outline

- Motivations
- **/**
- NeXtAlign Model
 - Model Design ✓
 - Model Training ✓
- Experimental Results
- Conclusions

Experimental Setup

- Evaluation objectives
 - How accurate is NeXtAlign for network alignment?
 - Effectiveness of different components
- Datasets

Scenarios	Networks	# of nodes	# of edges	# of attributes
S1	ACM	9,872	39,561	17
31	DBLP	9,916	44,808	17
S2	Foursquare	5,313	54,233	0
	Twitter	5,120	130,575	0
S3	Phone	1,000	41,191	0
	Email	1,003	4,627	0

- Baseline methods
 - Bright [1], NetTrans [2], FINAL [3], IONE [4], CrossMNA [5]

^[1] Yan, Yuchen, Si Zhang, and Hanghang Tong. "BRIGHT: A Bridging Algorithm for Network Alignment." WWW. 2021.

^[2] Zhang, Si, et al. "NetTrans: Neural Cross-Network Transformation." KDD. 2020.

^[3] Zhang, Si, and Hanghang Tong. "Final: Fast attributed network alignment." KDD. 2016.

^[4] Liu, Li, et al. "Aligning Users across Social Networks Using Network Embedding." IJCAI. 2016.

Results with 20% training data w/o node attributes.

	ACM-DBLP Foursquare		re-Twitter	Phone	Phone-Email	
	Hits@10	Hits@30	Hits@10	Hits@30	Hits@10	Hits@30
NeXtAlign	0.8417 ± 0.0032	0.9011±0.0081	0.2956±0.0096	0.4174±0.0066	0.3926±0.0168	0.6748±0.0105
Bright	0.7904±0.0041	0.8669±0.0041	0.2500±0.0154	0.3206±0.0097	0.2570±0.0091	0.5344±0.0086
NetTrans	0.7925±0.0065	0.8356±0.0082	0.2468±0.0036	0.3458±0.0098	0.2650±0.0025	0.5325±0.0075
FINAL	0.6768±0.0080	0.8237±0.0098	0.2357±0.0091	0.3457±0.0091	0.2203±0.0151	0.4586±0.0184
IONE	0.7476±0.0125	0.8453±0.0097	0.1624±0.0109	0.2918±0.0209	0.3779±0.0131	0.6444±0.0084
CrossMNA	0.6532±0.0042	0.7900±0.0041	0.0236±0.0172	0.0751±0.0384	0.1542±0.0041	0.4045±0.0115

Observations:

- Our method NeXtAlign significantly outperforms other baseline methods.
- More improvements on Foursquare-Twitter and Phone-Email whose network structures are disparate (i.e., consistency may not work well).

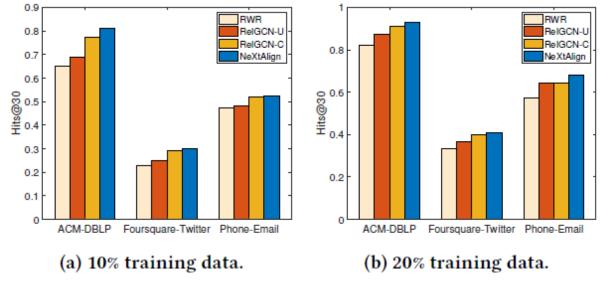
Results with node attributes.

	10% training data		20% training data		
	Hits@10	Hits@30	Hits@10	Hits@30	
NeXtAlign	0.785±0.010	0.871±0.009	0.872±0.016	0.942±0.003	
Bright	0.781±0.004	0.862±0.003	0.797±0.004	0.870±0.006	
NetTrans	0.708±0.004	0.846±0.009	0.841±0.010	0.916±0.013	
FINAL	0.651±0.013	0.817±0.009	0.825±0.008	0.916±0.006	

Observation: Our method NeXtAlign still outperforms other baseline methods.

Experimental Results #3

- Ablation study on model design
 - (1) RWR scores, (2) RelGCN-U: uses output of RelGCN-U,
 - (3) RelGCN-C: uses re-scaled relative positions



Observation: All components are necessary to achieve the best performance.

Ablation study on negative sampling strategies

Hits@30 of different negative sampling strategies.

	ACM-DBLP	Foursquare-Twitter	Phone-Email
NeXtAlign	0.9277	0.4103	0.6813
Uniform	0.8975	0.3924	0.6525
Degree	0.9093	0.3923	0.6637
Positive	0.9097	0.4040	0.6650

Observation: The proposed negative sampling method achieves a better performance than sampling hard negatives.

Outline

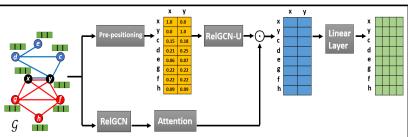
- Motivations ✓
- NeXtAlign Model ✓
 - Model Design
 - Model Training
- Experimental Results ✓

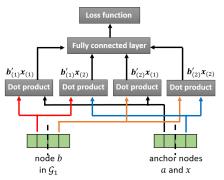
Conclusions

DEA.

Conclusions

- Goal: To strike a balance of alignment consistency and disparity in semi-supervised network alignment
- Method:
 - Model design
 - Connect GCNs with FINAL
 - RelGCN for alignment consistency
 - Model training
 - New sampling method for disparity
- Results
 - NeXtAlign significantly outperforms baseline methods
 - The proposed sampling method achieves better performance





DEN

Embedding Mean Square Errors

- Empirical risk $J_{(a,x)}^B$
 - Sample B nodes by p_d , p_n , p_{dc} , p_{nc}
- Denote $\theta = [b'_1x, \dots, b'_{n_1}x, y'_1x, \dots, y'_{n_2}x]$
- $J_{(a,x)}^{B} = -\frac{1}{B} \sum_{i_1, i_2, j_1, j_2} (\log \sigma(\mathbf{b}'_{i_1} \mathbf{x}) + \log \sigma(\mathbf{b}'_{i_2} \mathbf{x}) + \log \sigma(\mathbf{b}'_{i_2} \mathbf{x}) + \log \sigma(\mathbf{y}'_{j_1} \mathbf{x}) + \log \sigma(\mathbf{y}'_{j_2} \mathbf{x}))$ $-\frac{1}{B} \sum_{i_3, i_4, j_3, j_4} (\log \sigma(-\mathbf{b}'_{i_3} \mathbf{x}) + \log \sigma(-\mathbf{b}'_{i_4} \mathbf{x}) + \log \sigma(-\mathbf{y}'_{j_3} \mathbf{x}) + \log \sigma(-\mathbf{y}'_{j_4} \mathbf{x}))$
- θ^* , θ^B : optimal embedding to $J_{(a,x)}$, $J_{(a,x)}^B$

LEMMA Denote $\Delta \theta_b = \theta_b^B - \theta_b^*$ and $\Delta \theta_y = \theta_y^B - \theta_y^*$. The mean square errors for nodes $b \in \bar{\mathcal{L}}_1$ and $y \in \bar{\mathcal{L}}_2$ can be formulated by

$$\mathbb{E}\left[\Delta\theta_b^2\right] = \frac{1}{B} \left[\frac{1}{p_d(b|a) + p_{dc}(b|x)} + \frac{1}{kp_n(b|a) + kp_{nc}(b|x)} - C \right]$$

$$\mathbb{E}\left[\Delta\theta_y^2\right] = \frac{1}{B} \left[\frac{1}{p_d(y|x) + p_{dc}(y|a)} + \frac{1}{kp_n(y|x) + kp_{nc}(y|a)} - C \right]$$

For nodes $b \in \mathcal{L}_1$ and $y \in \mathcal{L}_2$, the mean square error is computed by

$$\mathbb{E}\left[\Delta\theta_b^2\right] = \mathbb{E}[\Delta\theta_y^2] = \frac{1}{B}\left[\frac{1}{p_1} + \frac{1}{kp_2} - C\right]$$

