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Network Alignment

• To find node correspondence across networks.
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Network Alignment: Applications

• Fraud detection

• Unsuspicious patterns become suspicious!
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• Other applications
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Network Alignment: Applications

Drug design 
[Kazemi et al. 2016]

[1] Kazemi, Ehsan, et al. "PROPER: global protein interaction network alignment through percolation matching." BMC bioinformatics 2016
[2] Yan, Ming, et al. "Friend transfer: Cold-start friend recommendation with cross-platform transfer learning of social knowledge." 2013
IEEE International Conference on Multimedia and Expo (ICME). IEEE, 2013.

Friend recommendation 
[Yan et al. 2013]



Existing Methods

• Graph matching based methods
• Koopsmans-Beckmann’s quadratic assignment problem (KB-QAP)

• Choices on constraints
• 𝑺 is a permutation matrix (exact constraint)

• 𝑺 is a doubly stochastic matrix (stochastic relaxation)

• 𝑺 is an orthogonal matrix (spectral relaxation)
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max Tr 𝑺𝑇𝑨1𝑺𝑨2 + Tr(𝑯𝑇𝑺)
𝑠. 𝑡. constraints on 𝑺

𝑺 ∈ 0,1 𝑛1×𝑛2 , 𝑺𝟏𝑛2 ≤ 𝟏𝑛1 , 𝑺
𝑇𝟏𝑛1 = 𝟏𝑛2



Existing Methods (con’t)

• Embedding based methods
• Learn representations of nodes in different networks

• Infer alignment by similarities among embedding vectors
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(showcase from Liu et al. 2016)

[1] Liu, Li, et al. "Aligning Users across Social Networks Using Network Embedding." IJCAI. 2016.



Limitation #1: 
Representation Power
• Koopsmans-Beckmann’s QAP

• Node-𝑢 feature vector: 𝑢-th row of linear transformations 𝑺𝑇𝑨1 & 𝑨2𝑺
𝑇

• Inner product of feature vectors computed from 𝑨1 and 𝑨2
• Maximizing inner product similarities

• Limitations:
• Linear transformation based on connections

• High dimensions 

• Question: How to learn better node representations?
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max Tr 𝑺𝑇𝑨1𝑺𝑨2 =

𝑢,𝑘
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Limitation #2:
Representation Incomparability
• Single network embedding

• Intra-network node similarities do not change

• Semantically rotation/translation invariance
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Limitation #2 (con’t)

• Multiple network embedding
• Given 𝑢 is aligned with 𝑣

• Inter-network node similarities totally changed!

• Question: How to address the representation incomparability?
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Prob. Def.: Non-Rigid Network 
Alignment

• Input:
• (1) undirected networks 𝒢1 = 𝒱1, 𝑨1, 𝑿1

0 and 𝒢2 = 𝒱2, 𝑨2, 𝑿2
0 ;

• (2) labeled aligned node pairs ℒ+ = 𝑢𝑙𝑖 , 𝑣𝑙𝑖 | 𝑖 = 1,⋯ , 𝐿 ;

• (3) (optional) prior cross-network node similarity matrix 𝑯.

• Output:  
• (1) alignment matrix 𝑺;

• (2) node representation matrices 𝒁, 𝒀 of 𝒢1, 𝒢2
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Model Overview
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Single Network GCN

• Spatial-based GCN formulation (Intra-GCN)

• Aggregate hidden representations from neighborhood 𝒩𝑢

• Combine aggregated representation

• Limitations: only aggregate within a single network

• Question: How to aggregate across different networks? 
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𝒙𝒩𝑢

𝑡 = Aggregate 𝒙𝑢′
𝑡−1, ∀𝑢′ ∈ 𝒩𝑢

𝒙𝑢
𝑡 = 𝜎( 𝒙𝑢

𝑡−1 𝒙𝒩𝑢
𝑾𝑡

vector concatenation



Multi-GCN: Formulation #1

• Cross-network aggregation via alignment

• Sample on alignment 𝑺 for aggregation localization and efficiency

• Cross-network combination
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ෝ𝒙𝑢 = Aggregatecross 𝒚𝑣 = 

𝑣∈𝒱2

𝑺 𝑢, 𝑣 𝒚𝑣

ෝ𝒚𝑣 = Aggregatecross 𝒙𝑢 = 

𝑢∈𝒱1

𝑺 𝑢, 𝑣 𝒙𝑢

𝒙𝑢 = Combinecross 𝒙𝑢, ෝ𝒙𝑢 = [𝒙𝑢| ෝ𝒙𝑢 𝑾cross + 𝒃1
𝒚𝑣 = Combinecross 𝒚𝑣, ෝ𝒚𝑣 = [𝒚𝑣| ෝ𝒚𝑣 𝑾cross + 𝒃2



Multi-GCN: Formulation #2

• Multi-GCN loss function

• Inter-network disagreement loss
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𝒥GCN = 𝒥𝒢1 𝑿 + 𝒥𝒢2 𝒀 + 𝜆𝒥cross 𝑿, 𝒀

Intra-network loss (e.g., SkipGram) 

Inter-network loss

𝒥cross 𝑿, 𝒀 = 

𝑢∈𝒱1

𝒙𝑢 −

𝑘=1

𝐾

𝑺1 𝑢, 𝑣𝑞𝑘 𝒚𝑞𝑘

2

2

+ 

𝑣∈𝒱1

𝒚𝑣 −

𝑘=1

𝐾

𝑺2 𝑢𝑝𝑘 , 𝑣 𝒙𝑢𝑝𝑘
2
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𝑘=1

𝐾

𝑺1 𝑢, 𝑣𝑞𝑘 𝒚𝑣𝑞𝑘
||

𝑘′

𝑺1𝑺2
𝑇 𝑢, 𝑢𝑝

𝑘′
𝒙𝑢𝑝

𝑘′
𝑾cross + 𝒃2

Cross-network Within-network 
by alignment
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Non-Rigid Point Set 
Alignment (NR-PSA)
• Goal: to address the representation incomparability

• Key ideas:
• View node representation vectors as points in Euclidean space

• Displace one point set towards another based on labeled alignment

• Move coherently in two views (i.e., point view and node view)
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displacement

point set of 𝒢1 point set of 𝒢2



NR-PSA: Formulation #1

• Intuition: to maximize labeled node-pair overlaps

• Given labeled node alignment 𝑢𝑙𝑖 , 𝑣𝑙𝑖 , 𝑙 = 1,⋯ , 𝐿

• Minimize vector distances after displacement

• Functional minimization problem

• 𝒇 ℋ
2 is the RKHS norm for regularization
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min
𝒇



𝑖=1

𝐿

𝒙𝑢𝑙𝑖
+
1

2
𝒇 𝒙𝑢𝑙𝑖

− 𝒚𝑣𝑙𝑖 2

2

+ 𝛼 𝒇 ℋ
2

vector-valued non-rigid 
displacement function 



NR-PSA: Formulation #2

• Intuition: each point 𝑥𝑢𝑙𝑖
has two interpretations (views)

• Representation vectors in the Euclidean space

• Nodes of networks in the non-Euclidean graph space

• Divide ℋ into two RKHS, i.e., ℋ = ℋ1 ⊕ℋ2, such that

• Re-write RKHS norm regularization into
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ℋ = 𝒇 𝒇 𝒙 = 𝒇1 𝒙 + 𝒇2 𝒙 , 𝒇1 ∈ ℋ1, 𝒇
2 ∈ ℋ2

𝒇 ℋ
2 = min

𝒇=𝒇1+𝒇2

𝒇1∈ℋ1

𝒇2∈ℋ2

𝛼1 𝒇1 ℋ1

2 + 𝛼2 𝒇2 ℋ2

2 + 𝜇 

𝑗=1

𝑛1−𝐿

𝒇1 𝒙𝑢𝑟𝑗
− 𝒇2 𝒙𝑢𝑟𝑗

2

displacement consistency in two views 
on the unlabeled nodes 



NR-PSA: Formulation #2 
(con’t)
• By representer theorem

• Matrix 𝑲: kernel matrix computed by reproducing kernels in ℋ1,ℋ2

• 𝚻 is the matrix variable and ℐ = 𝑢𝑙𝑖 𝑖 = 1,⋯ , 𝐿

• Matrix-form objective function

• 𝑲ℐ = 𝑲 ℐ, ℐ

• Details in the paper.
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𝒇 𝒙𝑢 = 𝑲 𝑢, ℐ 𝚻

min
𝚻

𝒥PSA =

𝑖=1

𝐿

𝒙𝑢𝑙𝑖
+
1

2
𝑲 𝑢𝑙𝑖 , ℐ 𝚻 − 𝐲v𝑙𝑖 2

2

+ 𝛼Tr 𝚻𝑇𝑲ℐ𝚻



Origin: Algorithm

• Alternating between two stages
• Stage #1: to learn node representations based on current alignment

• Stage #2: to solve for the displacement function 

• Stage #1: mini-batched SGD

• Stage #2: gradient descent

• Time complexity: sub-quadratic w.r.t # of nodes

• Outputs displaced node representations 𝒁 of 𝒢1
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𝜕𝒥PSA
𝜕𝚻

=
1

2
𝑲ℐ
𝑇𝑲ℐ𝚻 +𝑲ℐ

𝑇 𝑿 ℐ, : − 𝒀 ℐ, : + 2𝛼𝑲ℐ𝚻
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Experiment Setup

• Datasets:
• Cora-1 & Cora-2 networks (nodes: 2,708 vs. 2,708)

• Citeseer-1 & Citeseer-2 networks (nodes: 3,327 vs. 3,327)

• Foursquare & Twitter networks (nodes: 5,313 vs. 5,120)

• Evaluation objectives:
• Effectiveness: alignment accuracy

• Efficiency: running time

• Comparison methods:
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Methods Categories

Origin Representation based

SageAlign Representation based

FINAL-N [1] KB-QAP based

FINAL-P [1] KB-QAP based

REGAL [2] Representation based

IONE [3] Representation based

PriorSim Heuristics

[1] Zhang, Si, and Hanghang Tong. "Final: Fast attributed network alignment." Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. ACM, 2016.
[2] Heimann, Mark, et al. "Regal: Representation learning-based graph alignment." Proceedings of the 27th ACM International
Conference on Information and Knowledge Management. ACM, 2018.
[3] Liu, Li, et al. "Aligning Users across Social Networks Using Network Embedding." IJCAI. 2016.



R1. Effectiveness
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Observation: outperforms both QAP-based methods FINAL 
and other embedding-based methods. 



R2. Visualizations
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Observations: 
• Embeddings 𝑿, 𝒀 of 𝒢1, 𝒢2 are misleading even with 

cross-network disagreement loss;
• Displaced embeddings 𝒁, 𝒀 are more accurate for 

alignment.



R3. Efficiency
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Observation: the extra computational cost for Inter-
GCN is quite light.
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Conclusions
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• Problem: Non-rigid network alignment

• Solutions (proposed Origin algorithm):
• Multi-GCN: node representation learning across networks based on GCN

• NR-PSA: non-rigid point-set alignment in two views

• Results:
• Find more accurate node correspondence 

• Learn more meaningful node representations

• Efficient compared to single-network counterpart

• More details in paper.
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Thank You!


