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Network Alignment |

* To find node correspondence across networks.




S‘IDEH!)
Network Alignment: Applications —

* Fraud detection

* Unsuspicious patterns become suspicious!



Network Alignment: Applications

e Other applications

Drug design Friend recommendation
[Kazemi et al. 2016] [Yan et al. 2013]
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[1] Kazemi, Ehsan, et al. "PROPER: global protein interaction network alignment through percolation matching." BMC bioinformatics 2016
[2] Yan, Ming, et al. "Friend transfer: Cold-start friend recommendation with cross-platform transfer learning of social knowledge." 2013

IEEE International Conference on Multimedia and Expo (ICME). |EEE, 2013. 3
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Existing Methods @

e Graph matching based methods
* Koopsmans-Beckmann’s quadratic assignment problem (KB-QAP)

max Tr(STA,SA,) + Tr(H'S)
s.t. constraintson §

* Choices on constraints
* S is a permutation matrix (exact constraint)
* Sis a doubly stochastic matrix (stochastic relaxation)

S €[0,1]"",81, <1,,571, =1,

e Sis an orthogonal matrix (spectral relaxation)




Existing Methods (con’t)

* Embedding based methods

* Learn representations of nodes in different networks

* Infer alignment by similarities among embedding vectors

Twitter Network

Foursquare Network

(showcase from Liu et al. 2016)
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[1] Liu, Li, et al. "Aligning Users across Social Networks Using Network Embedding." IJCAI. 2016.




Limitation #1: :‘IDLIJ}
Representation Power

 Koopsmans-Beckmann’s QAP /m\

1\
max Tr(STAS42) = Y (T ADw(AS e @28 g
u,k

 Node-u feature vector: u-th row of linear transformations S 4; & A,8*
* Inner product of feature vectors computed from A; and 4,
* Maximizing inner product similarities

e Limitations:

e Linear transformation based on connections
* High dimensions

* Question: How to learn better node representations?




Limitation #2: z‘lhtﬂlh

O

Representation Incomparability

* Single network embedding

) ® rotation + translation @ @
® W > ° ‘.
O
O

* Intra-network node similarities do not change
* Semantically rotation/translation invariance



Limitation #2 (con’t)

« Multiple network embedding
* Given u is aligned with v

Ideal case
?® ®
@ .@

v

rotation around v
>

* Inter-network node similarities totally changed!
* Question: How to address the representation incomparability?



Prob. Def.: Non-Rigid Network@
Alignment

* Input:
e (1) undirected networks G; = {V;,4;,X%}and G, = {V,,4,,X>};
* (2) labeled aligned node pairs L* = {(uli,vli)| =1, -~-,L};
* (3) (optional) prior cross-network node similarity matrix H.

* Output:
e (1) alighnment matrix S;
* (2) node representation matrices Z,Y of G4, G,
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Model Overview _

Multi-GCN Multi-View Point Set Alighment
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Single Network GCN @

e Spatial-based GCN formulation (Intra-GCN)

x5, = Aggregate({%,/ %, vu' € \V,;})
% = (317, W)

~

vector concatenation

* Aggregate hidden representations from neighborhood V,,
 Combine aggregated representation
* Limitations: only aggregate within a single network

* Question: How to aggregate across different networks?




Multi-GCN: Formulation #1

. . . G1
* Cross-network aggregation via alignment = 0 i)
— :Intra-network Sl(u)Uql
aggregation

Xy = Aggregatecross(¥y) = z Sw,v)yy ., : Cross-network

vEV, aggregation
G2

Yy = Aggregatecross(xu) = E S(u, U)xu 7
%, = AGGREGATE o (%) = Y S1(u.vg,)¥w,,
= (%) ; 1( )y
K
ve = AGGREGATE, 1 (¥,) = Z S, (um,v)iu“_
k=1

 Sample on alignment S for aggregation localization and efficiency

* Cross-network combination

x, = Combinecross(Xy, Xy) = [X,|1Xy]W cross + b1
¥, = Combinecross(Vy, ¥») = [¥ullVu]Wcross + b
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Multi-GCN: Formulation #5@’

e Multi-GCN loss function

JGCN =

Jg,(X) + Jg,(Y)

Inter-network loss
+ AJcross (X, Y)

Intra-network loss (e.g., SkipGram)
* Inter-network disagreement loss

2 2

K K
Jeross(X,Y) = z Xy — z S1(wva)yall| + z Yo — z S2 (upk'v)xupk
uEVl k=1 2 vEVl k=1 2
V4
K 4
~ T ~
;51(% qu))’vqk | 2(5152) (U, upk/) xupk, Weross + b,

Cross-network

Within-network
by alignment
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Non-Rigid Point Set 2@
Alignment (NR-PSA)

Goal: to address the representation incomparability

* Key ideas:
* View node representation vectors as points in Euclidean space
* Displace one point set towards another based on labeled alighment
* Move coherently in two views (i.e., point view and node view)
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displacement »
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point set of Ql point set of G,




NR-PSA: Formulation #1

* Intuition: to maximize labeled node-pair overlaps

* Given labeled node alignment (uli,vli),l =1,:--,L

L
min 2
f .

=1

1 2 ,
tuy + 51 (%, )|~ v ||+ allfIl;

vector-valued non-rigid
displacement function

* Minimize vector distances after displacement
* Functional minimization problem

* |Ifll5; is the RKHS norm for regularization
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NR-PSA: Formulation #2 @

* Intuition: each point x,,, has two interpretations (views)
l

* Representation vectors in the Euclidean space
* Nodes of networks in the non-Euclidean graph space

* Divide H into two RKHS, i.e., H = H; @& H,, such that

H={flIfx) =)+ f>(x),f' € Hy,f* €H,
e Re-write RKHS norm regularization into

nl—L

2
£ = min  asllF i, + ezl + ) [ (xa,,) = £2 (%))
flex, j=1
f2€x;

displacement consistency in two views
on the unlabeled nodes




NR-PSA: Formulation #2 @
(con’t)

* By representer theorem
fxy) = KT
* Matrix K: kernel matrix computed by reproducing kernels in H;, H,
T isthe matrix variable and J = {uli|i =1, -~-,L}

* Matrix-form objective function

L
min Jpsp = 2
=1

° Kg == K(], 7)
* Details in the paper.

2

+ aTr(TTK,T)

1
Xy, + 5 K(uw, )T -y, 2
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Origin: Algorithm @

e Alternating between two stages
» Stage #1: to learn node representations based on current alignment
» Stage #2: to solve for the displacement function

e Stage #1: mini-batched SGD
e Stage #2: gradient descent

0 1
Jal?I‘SA =S Ki KT+ K5 (X(9,:) = ¥(7,:)) + 2aK5T

 Time complexity: sub-quadratic w.r.t # of nodes

* Outputs displaced node representations Z of (4
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Experiment Setup

* Datasets:
e Cora-1 & Cora-2 networks (nodes: 2,708 vs. 2,708)
e Citeseer-1 & Citeseer-2 networks (nodes: 3,327 vs. 3,327)
* Foursquare & Twitter networks (nodes: 5,313 vs. 5,120)

* Evaluation objectives:
» Effectiveness: alignment accuracy
 Efficiency: running time

Methods Categories

Origin Representation based

SageAlign Representation based
® COmparison methods: FINAL-N [1] | KB-QAP based
FINAL-P [1] | KB-QAP based
REGAL [2] Representation based
IONE [3] Representation based

PriorSim Heuristics

[1] Zhang, Si, and Hanghang Tong. "Final: Fast attributed network alignment." Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. ACM, 2016.

[2] Heimann, Mark, et al. "Regal: Representation learning-based graph alignment." Proceedings of the 27th ACM International
Conference on Information and Knowledge Management. ACM, 2018. 23
[3] Liu, Li, et al. "Aligning Users across Social Networks Using Network Embedding." [JCAI. 2016.




Alignment accuracy
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(b) 30% labeled alignment.
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(c) 20% labeled alignment.

Observation: outperforms both QAP-based methods FINAL
and other embedding-based methods.
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R2. Visualizations 1
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(a) Cora-1 node representations (i.e. X). (b) Displaced cora-1 representations (i.e. Z). (c) Cora-2 node representations (i.e. Y).

Observations:
* Embeddings X,Y of G4, G, are misleading even with
cross-network disagreement loss;
* Displaced embeddings Z,Y are more accurate for
alignment.




R3. Efficiency
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Observation: the extra computational cost for Inter-
GCN is quite light.
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Conclusions

Problem: Non-rigid network alighment

Solutions (proposed Origin algorithm):
* Multi-GCN: node representation learning across networks based on GCN
* NR-PSA: non-rigid point-set alignment in two views

Results:
* Find more accurate node correspondence
* Learn more meaningful node representations
 Efficient compared to single-network counterpart

More details in paper. \,&:
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Thank You!



