

Origin: Non-Rigid Network Alignment

Network Alignment

• To find node correspondence across networks.

Network Alignment: Applications

Fraud detection

Unsuspicious patterns become suspicious!

Network Alignment: Applications

Other applications

Drug design [Kazemi et al. 2016]

Friend recommendation [Yan et al. 2013]

[1] Kazemi, Ehsan, et al. "PROPER: global protein interaction network alignment through percolation matching." BMC bioinformatics 2016 [2] Yan, Ming, et al. "Friend transfer: Cold-start friend recommendation with cross-platform transfer learning of social knowledge." 2013 IEEE International Conference on Multimedia and Expo (ICME). IEEE, 2013.

Existing Methods

- Graph matching based methods
 - Koopsmans-Beckmann's quadratic assignment problem (KB-QAP)

 $\max \operatorname{Tr}(\boldsymbol{S}^{T}\boldsymbol{A}_{1}\boldsymbol{S}\boldsymbol{A}_{2}) + \operatorname{Tr}(\boldsymbol{H}^{T}\boldsymbol{S})$ s.t. constraints on \boldsymbol{S}

- Choices on constraints
 - S is a permutation matrix (exact constraint)
 - S is a doubly stochastic matrix (stochastic relaxation)

$$S \in [0,1]^{n_1 \times n_2}, S\mathbf{1}_{n_2} \le \mathbf{1}_{n_1}, S^T\mathbf{1}_{n_1} = \mathbf{1}_{n_2}$$

• S is an orthogonal matrix (spectral relaxation)

Existing Methods (con't)

- Embedding based methods
 - Learn representations of nodes in different networks
 - Infer alignment by similarities among embedding vectors

(showcase from Liu et al. 2016)

[1] Liu, Li, et al. "Aligning Users across Social Networks Using Network Embedding." IJCAI. 2016.

Limitation #1: Representation Power

Koopsmans-Beckmann's QAP

max
$$\operatorname{Tr}(\mathbf{S}^T \mathbf{A}_1 \mathbf{S} \mathbf{A}_2) = \sum_{u,k} (\mathbf{S}^T \mathbf{A}_1)_{uk} (\mathbf{A}_2 \mathbf{S}^T)_{uk}$$

- Node-*u* feature vector: *u*-th row of linear transformations $S^T A_1 \otimes A_2 S^T$
- Inner product of feature vectors computed from A_1 and A_2
- Maximizing inner product similarities
- Limitations:
 - Linear transformation based on connections
 - High dimensions
- **Question:** How to learn better node representations?

Limitation #2: Representation Incomparability

Single network embedding

- Intra-network node similarities do not change
- Semantically rotation/translation invariance

Limitation #2 (con't)

- Multiple network embedding
 - Given u is aligned with v

- Inter-network node similarities totally changed!
- **Question:** How to address the representation incomparability?

Prob. Def.: Non-Rigid Network

• Input:

- (1) undirected networks $G_1 = \{V_1, A_1, X_1^0\}$ and $G_2 = \{V_2, A_2, X_2^0\}$;
- (2) labeled aligned node pairs $\mathcal{L}^+ = \{(u_{l_i}, v_{l_i}) | i = 1, \cdots, L\};$
- (3) (optional) prior cross-network node similarity matrix *H*.
- Output:
 - (1) alignment matrix *S*;
 - (2) node representation matrices Z, Y of G_1, G_2

Outline

- Motivations
- Model Overview
- Q1: Multiple Network Representation Learning
- Q2: Non-Rigid Point Set Alignment
- Experiments
- Conclusions

Model Overview

Outline

- Motivations
- Model Overview
- Q1: Multiple Network Representation Learning
- Q2: Non-Rigid Point Set Alignment
- Experiments
- Conclusions

Single Network GCN

Spatial-based GCN formulation (Intra-GCN)

 $\widetilde{\boldsymbol{x}}_{\mathcal{N}_{u}}^{t} = \operatorname{Aggregate}\left(\left\{\widetilde{\boldsymbol{x}}_{u'}^{t-1}, \forall u' \in \mathcal{N}_{u}\right\}\right)$ $\widetilde{\boldsymbol{x}}_{u}^{t} = \sigma\left(\left[\widetilde{\boldsymbol{x}}_{u}^{t-1} \middle| \middle| \widetilde{\boldsymbol{x}}_{\mathcal{N}_{u}}\right] \boldsymbol{W}^{t}\right)$

vector concatenation

- Aggregate hidden representations from neighborhood \mathcal{N}_u
- Combine aggregated representation
- Limitations: only aggregate within a single network
- **Question:** How to aggregate across different networks?

Multi-GCN: Formulation #1

- Cross-network aggregation via alignment
 - $\widehat{x}_{u} = \operatorname{Aggregate}_{\operatorname{CrOSS}}(\widetilde{y}_{v}) = \sum_{v \in \mathcal{V}_{2}} S(u, v) \widetilde{y}_{v}$ $\widehat{y}_{v} = \operatorname{Aggregate}_{\operatorname{CrOSS}}(\widetilde{x}_{u}) = \sum_{u \in \mathcal{V}_{1}} S(u, v) \widetilde{x}_{u}$ $\widehat{x}_{u} = \operatorname{Aggregate}_{\operatorname{CrOSS}}(\widetilde{x}_{u}) = \sum_{u \in \mathcal{V}_{1}} S(u, v) \widetilde{x}_{u}$ $\widehat{y}_{v} = \operatorname{Aggregate}_{\operatorname{CrOSS}}(\widetilde{y}_{v}) = \sum_{v \in \mathcal{V}_{1}} S_{1}(u, v_{q_{k}}) \widetilde{y}_{v_{q_{k}}}$
 - Sample on alignment S for aggregation localization and efficiency
- Cross-network combination

$$\begin{aligned} \boldsymbol{x}_{u} &= \text{Combine}_{\text{CrOSS}}(\boldsymbol{\widetilde{x}}_{u}, \boldsymbol{\widehat{x}}_{u}) = [\boldsymbol{\widetilde{x}}_{u} || \boldsymbol{\widehat{x}}_{u}] \boldsymbol{W}_{\text{CrOSS}} + \boldsymbol{b}_{1} \\ \boldsymbol{y}_{v} &= \text{Combine}_{\text{CrOSS}}(\boldsymbol{\widetilde{y}}_{v}, \boldsymbol{\widehat{y}}_{v}) = [\boldsymbol{\widetilde{y}}_{v} || \boldsymbol{\widehat{y}}_{v}] \boldsymbol{W}_{\text{CrOSS}} + \boldsymbol{b}_{2} \end{aligned}$$

 \mathcal{G}_1

: Edges

Multi-GCN: Formulation #2

• Multi-GCN loss function

Inter-network loss

$$\mathcal{J}_{\text{GCN}} = \mathcal{J}_{\mathcal{G}_1}(\boldsymbol{X}) + \mathcal{J}_{\mathcal{G}_2}(\boldsymbol{Y}) + \lambda \mathcal{J}_{\text{Cross}}(\boldsymbol{X}, \boldsymbol{Y})$$

Intra-network loss (e.g., SkipGram)

• Inter-network disagreement loss

$$\mathcal{J}_{\text{cross}}(\boldsymbol{X},\boldsymbol{Y}) = \sum_{u \in \mathcal{V}_{1}} \left\| \boldsymbol{x}_{u} - \sum_{k=1}^{K} \boldsymbol{S}_{1}(\boldsymbol{u}, \boldsymbol{v}_{q_{k}}) \boldsymbol{y}_{q_{k}} \right\|_{2}^{2} + \sum_{v \in \mathcal{V}_{1}} \left\| \boldsymbol{y}_{v} - \sum_{k=1}^{K} \boldsymbol{S}_{2}(\boldsymbol{u}_{p_{k}}, \boldsymbol{v}) \boldsymbol{x}_{u_{p_{k}}} \right\|_{2}^{2}$$
$$\left[\sum_{k=1}^{K} \boldsymbol{S}_{1}(\boldsymbol{u}, \boldsymbol{v}_{q_{k}}) \widetilde{\boldsymbol{y}}_{v_{q_{k}}} \right\| \sum_{k'} (\boldsymbol{S}_{1} \boldsymbol{S}_{2}^{T}) \left(\boldsymbol{u}, \boldsymbol{u}_{p_{k'}} \right) \widetilde{\boldsymbol{x}}_{u_{p_{k'}}} \right] \boldsymbol{W}_{\text{cross}} + \boldsymbol{b}_{2}$$
Cross-network Within-network by alignment

Outline

- Motivations
- Model Overview
- Q1: Multiple Network Representation Learning
- Q2: Non-Rigid Point Set Alignment
- Experiments
- Conclusions

Non-Rigid Point Set Alignment (NR-PSA)

- Goal: to address the representation incomparability
- Key ideas:
 - View node representation vectors as points in Euclidean space
 - Displace one point set towards another based on labeled alignment
 - Move coherently in two views (i.e., point view and node view)

NR-PSA: Formulation #1

- Intuition: to maximize labeled node-pair overlaps
- Given labeled node alignment (u_{l_i}, v_{l_i}) , $l = 1, \cdots, L$

$$\min_{f} \sum_{i=1}^{L} \left\| \boldsymbol{x}_{u_{l_{i}}} + \frac{1}{2} \boldsymbol{f} \left(\boldsymbol{x}_{u_{l_{i}}} \right) - \boldsymbol{y}_{v_{l_{i}}} \right\|_{2}^{2} + \alpha \|\boldsymbol{f}\|_{\mathcal{H}}^{2}$$
vector-valued non-rigid
displacement function

- Minimize vector distances after displacement
- Functional minimization problem
- $\|\boldsymbol{f}\|_{\mathcal{H}}^2$ is the RKHS norm for regularization

NR-PSA: Formulation #2

- Intuition: each point $x_{u_{l_i}}$ has two interpretations (views)
 - Representation vectors in the Euclidean space
 - Nodes of networks in the non-Euclidean graph space
- Divide $\mathcal H$ into two RKHS, i.e., $\mathcal H = \mathcal H_1 \oplus \mathcal H_2$, such that

$$\mathcal{H} = \{ \boldsymbol{f} | \boldsymbol{f}(\boldsymbol{x}) = \boldsymbol{f}^{1}(\boldsymbol{x}) + \boldsymbol{f}^{2}(\boldsymbol{x}), \boldsymbol{f}^{1} \in \mathcal{H}_{1}, \boldsymbol{f}^{2} \in \mathcal{H}_{2} \}$$

• Re-write RKHS norm regularization into

$$\|\boldsymbol{f}\|_{\mathcal{H}}^{2} = \min_{\substack{\boldsymbol{f}=\boldsymbol{f}^{1}+\boldsymbol{f}^{2}\\\boldsymbol{f}^{1}\in\mathcal{H}_{1}\\\boldsymbol{f}^{2}\in\mathcal{H}_{2}}} \alpha_{1} \|\boldsymbol{f}^{1}\|_{\mathcal{H}_{1}}^{2} + \alpha_{2} \|\boldsymbol{f}^{2}\|_{\mathcal{H}_{2}}^{2} + \mu \sum_{j=1}^{n_{1}-L} \left[\boldsymbol{f}^{1}\left(\boldsymbol{x}_{u_{r_{j}}}\right) - \boldsymbol{f}^{2}\left(\boldsymbol{x}_{u_{r_{j}}}\right)\right]^{2}$$

displacement consistency in two views on the unlabeled nodes

NR-PSA: Formulation #2 (con't)

• By representer theorem

$$\boldsymbol{f}(\boldsymbol{x}_u) = \boldsymbol{K}(u,\mathcal{I})\mathbf{T}$$

- Matrix **K**: kernel matrix computed by reproducing kernels in \mathcal{H}_1 , \mathcal{H}_2
- **T** is the matrix variable and $\mathcal{I} = \{u_{l_i} | i = 1, \cdots, L\}$
- Matrix-form objective function

$$\min_{\mathbf{T}} \mathcal{J}_{\text{PSA}} = \sum_{i=1}^{L} \left\| \boldsymbol{x}_{u_{l_i}} + \frac{1}{2} \boldsymbol{K} (u_{l_i}, \mathcal{I}) \mathbf{T} - \mathbf{y}_{v_{l_i}} \right\|_2^2 + \alpha \text{Tr}(\mathbf{T}^T \boldsymbol{K}_{\mathcal{I}} \mathbf{T})$$

- $K_{\mathcal{I}} = K(\mathcal{I}, \mathcal{I})$
- Details in the paper.

Origin: Algorithm

- Alternating between two stages
 - Stage #1: to learn node representations based on current alignment
 - Stage #2: to solve for the displacement function
- Stage #1: mini-batched SGD
- Stage #2: gradient descent

$$\frac{\partial \mathcal{J}_{\text{PSA}}}{\partial \mathbf{T}} = \frac{1}{2} \mathbf{K}_{\mathcal{I}}^{T} \mathbf{K}_{\mathcal{I}} \mathbf{T} + \mathbf{K}_{\mathcal{I}}^{T} (\mathbf{X}(\mathcal{I},:) - \mathbf{Y}(\mathcal{I},:)) + 2\alpha \mathbf{K}_{\mathcal{I}} \mathbf{T}$$

- Time complexity: sub-quadratic w.r.t # of nodes
- Outputs displaced node representations $oldsymbol{Z}$ of \mathcal{G}_1

Outline

- Motivations
- Model Overview
- Q1: Multiple Network Representation Learning
- Q2: Non-Rigid Point Set Alignment
- Experiments
- Conclusions

Experiment Setup

- Datasets:
 - Cora-1 & Cora-2 networks (nodes: 2,708 vs. 2,708)
 - Citeseer-1 & Citeseer-2 networks (nodes: 3,327 vs. 3,327)
 - Foursquare & Twitter networks (nodes: 5,313 vs. 5,120)
- Evaluation objectives:
 - Effectiveness: alignment accuracy
 - Efficiency: running time
- Comparison methods:

Methods	Categories
Origin	Representation based
SageAlign	Representation based
FINAL-N [1]	KB-QAP based
FINAL-P [1]	KB-QAP based
REGAL [2]	Representation based
IONE [3]	Representation based
PriorSim	Heuristics

[1] Zhang, Si, and Hanghang Tong. "Final: Fast attributed network alignment." *Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining*. ACM, 2016.

[2] Heimann, Mark, et al. "Regal: Representation learning-based graph alignment." *Proceedings of the 27th ACM International Conference on Information and Knowledge Management*. ACM, 2018.

[3] Liu, Li, et al. "Aligning Users across Social Networks Using Network Embedding." IJCAI. 2016.

R1. Effectiveness

Observation: outperforms both QAP-based methods FINAL and other embedding-based methods.

R2. Visualizations

(a) Cora-1 node representations (i.e. X).

(b) Displaced cora-1 representations (i.e. \mathbf{Z}).

Observations:

- Embeddings X, Y of G_1, G_2 are misleading even with cross-network disagreement loss;
- Displaced embeddings *Z*, *Y* are more accurate for alignment.

R3. Efficiency

Observation: the extra computational cost for Inter-GCN is quite light.

Outline

- Motivations
- Model Overview
- Q1: Multiple Network Representation Learning
- Q2: Non-Rigid Point Set Alignment
- Experiments
- Conclusions

Conclusions

- Problem: Non-rigid network alignment
- Solutions (proposed Origin algorithm):
 - Multi-GCN: node representation learning across networks based on GCN
 - NR-PSA: non-rigid point-set alignment in two views
- Results:
 - Find more accurate node correspondence
 - Learn more meaningful node representations
 - Efficient compared to single-network counterpart
- More details in paper.

Thank You!

